Academic literature on the topic 'Monopole antenna'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monopole antenna.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monopole antenna"
Wang, Quanxin, Zhongxiang Shen, and Erping Li. "Modal-Expansion Analysis of Multiple Monopole Antennas." International Journal of Antennas and Propagation 2007 (2007): 1–10. http://dx.doi.org/10.1155/2007/76930.
Full textSaeidi, Tale, Idris Ismail, Wong Peng Wen, Adam R. H. Alhawari, and Ahmad Mohammadi. "Ultra-Wideband Antennas for Wireless Communication Applications." International Journal of Antennas and Propagation 2019 (April 22, 2019): 1–25. http://dx.doi.org/10.1155/2019/7918765.
Full textRay, K. P. "Design Aspects of Printed Monopole Antennas for Ultra-Wide Band Applications." International Journal of Antennas and Propagation 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/713858.
Full textGhorbani, Mehdi, and Habib Ghorbaninejad. "A Novel Ultrawideband Gear-Shaped Dielectric Ring Resonator Antenna." Mathematical Problems in Engineering 2021 (July 12, 2021): 1–8. http://dx.doi.org/10.1155/2021/8069873.
Full textChen, Xiaodong, Jianxin Liang, Pengcheng Li, and Choo C. Chiau. "UWB Electric and Magnetic Monopole Antennas." African Journal of Information & Communication Technology 2, no. 1 (February 28, 2006): 21. http://dx.doi.org/10.5130/ajict.v2i1.6.
Full textNikolaou, Symeon, and Muhammad Ali Babar Abbasi. "Miniaturization of UWB Antennas on Organic Material." International Journal of Antennas and Propagation 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/5949254.
Full textElsheakh, Dalia M., and Amr M. E. Safwat. "Compact 3D USB dongle monopole antenna for mobile wireless communication bands." International Journal of Microwave and Wireless Technologies 6, no. 6 (March 25, 2014): 639–44. http://dx.doi.org/10.1017/s1759078714000245.
Full textPalantei, Elyas, Arif Hidayat, Wardi Wardi, Intan Sari Areni, Sunarno Sunarno, Eko Setijadi, Dewiani Jamaluddin, et al. "6 Monopole Elements Array Intelligent Antennas for IoT Based Environmental Surveillance Network." EPI International Journal of Engineering 3, no. 2 (January 22, 2021): 126–31. http://dx.doi.org/10.25042/epi-ije.082020.06.
Full textKumari, Bibha, and Nisha Gupta. "Multifrequency Oscillator-Type Active Printed Antenna Using Chaotic Colpitts Oscillator." International Journal of Microwave Science and Technology 2014 (November 30, 2014): 1–10. http://dx.doi.org/10.1155/2014/675891.
Full textIBRAHIM, NUR. "Pendeteksian Lokasi Sumber Noise (Partial Discharge) secara Tiga Dimensi menggunakan Antenna Array." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 3, no. 2 (July 1, 2015): 106. http://dx.doi.org/10.26760/elkomika.v3i2.106.
Full textDissertations / Theses on the topic "Monopole antenna"
Schlub, Robert Walter, and n/a. "Practical Realization of Switched and Adaptive Parasitic Monopole Radiating Structures." Griffith University. School of Microelectronic Engineering, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040610.112148.
Full textLourens, Jako. "A wideband monopole antenna design." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80026.
Full textENGLISH ABSTRACT: The successful operation of a man-pack VHF jamming system requires a compact and efficient antenna operating over a wide bandwidth. The design of such an antenna is the focus of this thesis. The antenna should be of a practical size for a portable system and it must radiate energy efficiently across a frequency bandwidth in excess of a decade. A practical „target‟ specification of such an antenna has been drawn up based on the performance of a commercially available system. Several possible antenna topologies, each with a variety of loading section options, are tested using “Full wave” electromagnetic modelling (FEKO). Each topology/loading-section is numerically optimised for load element values by considering both its gain and reflection coefficient. Results of the „optimally loaded‟ solution for each topology are then compared to each other to arrive at the best overall design. The best result is found to be the traditional monopole whip-type antenna, with four R-L loading sections spread along its length. The simulated results show that the proposed antenna can be expected to meet the target standing wave ratio (SWR) specifications while offering a gain advantage of between 5 and 10 dBi higher than is available commercially. The selected design is constructed and its performance measured.
AFRIKAANSE OPSOMMING: Die suksesvolle werking van ʼn mobiele VHF "jammer‟ benodig ʼn kompakte antenna met ʼn bruikbare benuttingsgraad wat oor ʼn wyeband funksioneer. Die ontwerp van so ʼn antenna is die fokus van hierdie tesis. Die antenna moet kompak genoeg wees om draagbaar te wees en moet ʼn bruikbare benuttingsgraad hê oor ʼn frekwensie-bandwydte van meer as 10:1. ʼn Praktiese spesifikasie is opgestel vir die antenna deur te kyk na die sigblaaie van beskikbare stelsels. “Volgolf” elektromagnetiese modelleringsagteware is daarna gebruik om ʼn parametriese ondersoek te loods van verskillende antennas. Verskillende topologieë is getoets met ʼn verskeidenheid van belaaide seksies waar die topologieë ge-optimaliseer was vir wins en weerkaatskoëffisiënt. Die resultate vir elke optimale oplossing is vergelyk.Opgrond van hierdie resultate is bevind dat die beste topologie die tradisionele monopoolmas "whip-type‟ antenna is met vier RL lading afdelings langs die lengte versprei. Analise word gebruik om te wys dat verwag kan word dat dit aan die aanwins en staande golf verhouding (SGV) spesifikasies sal voldoen met n 10 dB verhoging in aanwins vir n laer SGV. Die geselekteerde ontwerp is gebou en gemeet om te verifieer dat dit aan die spesifikasies voldoen.
Morsy, Mohamed Mostafa. "DESIGN AND IMPLEMENTATION OF MICROSTRIP MONOPOLE AND DIELECTRIC RESONATOR ANTENNAS FOR ULTRA WIDEBAND APPLICATIONS." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/dissertations/169.
Full textJedlicka, R. P., and J. M. Williamson. "Monopatch Antenna for Balloon Telemetry Applications." International Foundation for Telemetering, 1992. http://hdl.handle.net/10150/611958.
Full textA new antenna design, which is particularly suited for balloon telemetry applications, is presented. In the past, simple monopoles have been utilized as transmit antennas on balloon payloads. The monopole radiation pattern has an inherent null along its axis. This causes an undesirable loss of signal when the balloon is directly overhead. To prevent this occurrence, a microstrip antenna patch was incorporated into the monopole design. This combination, a "monopatch" antenna, provides sufficient coverage even when the balloon is directly over the ground station. The monopatch has been successfully flown on high altitude balloon flights.
Hurley, Robert C. "Computation of monopole antenna currents using cylindrical harmonic expansions." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/22966.
Full textThis thesis investigates the viability of a new method for numerically computing the input impedance and the currents on simple antenna structures. This technique considers the antenna between two ground planes and uses multiregion cylindrical harmonic expansions with tangential field continuity to obtain the surface currents and input impedance. The computed results are compared to the results obtained from the Numerical Electromagnetics Code for various physical parameters to assess computational accuracy.
http://archive.org/details/computationofmon00hurl
Lieutenant, United States Navy
Lima, Larissa Cristiane Paiva de Sousa. "Design and experimental characterization of a metamaterial-assisted monopole antenna." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18155/tde-12112014-080528/.
Full textNos últimos anos uma nova classe de materiais, os metamateriais, emergiu na comunidade científica. O uso desses materiais torna possível alcançar propriedades eletromagnéticas singulares, como o índice de refração negativo. Hoje existem vastas aplicações que usufruem destas propriedades especiais, como os sensores, mantas de invisibilidade e antenas, onde se procura o aperfeiçoamento de suas características intrínsecas. Com base nestas considerações, este projeto buscou desenvolver estruturas metamateriais para controle das propriedades de radiação de antenas na faixa de micro-ondas, tais como diretividade e ganho. Mais especificamente, foram utilizados os metamateriais quirais, principalmente devido ao fenômeno de rotação do campo eletromagnético que abre a possibilidade de controle mais eficiente das propriedades de radiação de antenas. Além disso, os metamateriais quirais, por se mostrarem uma alternativa mais atraente para se obter meios com índice de refração zero ou negativo, possibilitam um maior grau de liberdade no projeto de diferentes estruturas. Este trabalho contempla, ainda, todas as etapas de projeto de tais estruturas, quais sejam: projeto, modelagem computacional, fabricação, e caracterização das estruturas. Mostramos melhorias para o ganho que, em alguns casos, chega a mais do que o dobro do ganho da antena monopolo convencional e para o parâmetro de perda de retorno, que atinge valores mínimos. Nós também mantivemos uma boa eficiência e melhoramos o casamento de impedância de entrada. Finalmente, vale salientar que essa nova tecnologia também apresenta grande potencial de ser aplicada em dispositivos de telecomunicações, com o intuito de aprimorar a comunicação baseada em antenas.
Hussain, Asif Jamshaid. "Design of an Ultra Wideband (UWB) Circular Disc Monopole Antenna." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34605.
Full textChristman, Alan M. "Validation of NEC-3 (Numerical Electromagnetics Code) with applications to MF and HF antenna technology." Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1172605318.
Full textSiao, Sin-long, and 蕭新朧. "Miniaturized GPS chip antenna and multiband monopole antenna." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/09486805850704632333.
Full text國立臺灣科技大學
電機工程系
97
For future communication systems, to simultaneously meet various requirements such as low profile, compact size, light weight and easy fabrication, the dimension consideration of antenna design is a very critical part. The radiation performance of the antenna also directly affects the received signal and communication quality. Therefore this thesis proposes a miniature GPS antenna to be built in the mobile phone, PDA and smart phone for obtaining the satellite signals. A commercial EM solver, HFSS has been utilized to design prototype and investigate the performance variation for antenna located at different positions in the test board. Moreover, a multi-band monopole antenna is also presented to integrate more wireless access functions. The operating band of the proposed antenna is composed of GSM, DCS, PCS, UMTS, Bluetooth, WLAN、WiMax, Hyper LAN, WWAN and WiFi. As to achieve a better radiation performance, the antenna also employs two back-strips to enhance more resonant frequencies and flexibly adjust input impedance in this study.
蔡文益. "Broadband Fractal Circular-Monopole Antenna." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/ejrb2e.
Full text景文科技大學
電腦與通訊研究所
99
In this paper, a novel broadband Fractal circular-monopole antenna is presented. This antenna consists of printed circular iteration with two iterating level and ground-plane with radius 25mm, making it easy to making it easy to combine directional, high gain and wide bandwidth. A prototype is designed to operate at 1.5GHz-5.86GHz, the measured 10 dB bandwidth is nearly 1:2 at the center frequency of 3.775GHz. Experimental results are shown to verify the validity of theoretical work. Fractal monopole antenna is formed with hollow of circle, which featuring of minification, multi-frequency bands and wide bands. The planar fractal monopole antenna is based on the Sierpinski carpet concept and to modified, the Sierpinski fractal has generated two iterations, use the decomposition algorithm by circular, and compare these with integrators and initiator type. Firstly, base on generally circular disc to generate hollow of circular, this initiator has a circumference of and 1mm trace width. In the decomposition algorithm, a geometric ratio of circle is taken and joining the midpoints of union of the circles central, reduce the circle to 1/3 diameter and canonical Sierpinski carpet algorithm to fill the circle with twice mathematics equals 1/9 diameter by 2nd iteration.The geometrical structure and dimensions of the proposed monopole type antenna is printed on FR4 substrate and is simulated by using FEM based electromagnetic simulator, Ansoft HFSS. All of them describe a multiband behavior of fractal antenna. This behavior is consistent from the input return loss and gain; moreover radiation patterns planes of view. The same scale factor existing among similar structures in the fractal circular-shape. It can be summarized that the self-similarity properties of the fractal structure are translated into its electromagnetic behavior. The current density distributions have a similar and vary in complicated among bands as well. Such distributions allows flexibility in matching multi- and width band operations in which a larger frequency required, such as FemtoCell and UMTS base station application including LTE, UMTS, GPS L1, WIFI, and WiMax. The circular monopole type is based on fractal structure and refers to the Sierpinski gasket self-similarity algorithm, a prototype of the design is successfully implemented with close agreement between measurement and simulation. The fractal geometry and overall size can be effectively utilized ID or Logo surface for integrating with other components in IT products.
Books on the topic "Monopole antenna"
Pote, J. H. Automatic antenna matching unit for H.F. - band monopole antennas. Birmingham: University of Birmingham, 1985.
Find full textAbd El Aziz Mohamed Darwish. Design of a continuous resistively loaded monopole antenna. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textHurley, Robert C. Computation of monopole antenna currents using cylindrical harmonic expansions. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textFitzGerrell, R. G. Monopole impedance and gain measurements of finite ground planes. Washington, D.C: U.S. Dept. of Justice, National Institute of Justice, 1989.
Find full textPadmosutoyo, Slamet Suharsa. NEC, NECGS, and MININEC numerical models of LF top-hat monopole antennas. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textDeMinco, N. Free-field measurements of the electrical properties of soil using the surface wave propagation between two monopole antennas. Washington, DC]: U.S. Department of Commerce, National Telecommunications and Information Administration, 2012.
Find full textMahmud, Riaz. A study of LF top-loaded monopole antennas using numerical modeling techniques: Comparison to scaled test model measurements. Monterey, Calif: Naval Postgraduate School, 1987.
Find full textM, Weiner Melvin, ed. Monopole elements on circular ground planes. Norwood, MA: Artech House, 1987.
Find full textRaines, Jeremy. Folded Unipole Antennas: Theory and Applications. McGraw-Hill Professional, 2007.
Find full textBook chapters on the topic "Monopole antenna"
Mohd Hasli, Mohamad Amir Imran, Ahmad Rashidy Razali, Aslina Abu Bakar, Mohd Aminudin Murad, and M. Feroze Akbar J. Khan. "Wideband Monopole Antenna for WWAN Services." In Lecture Notes in Electrical Engineering, 723–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24584-3_61.
Full textMayboroda, Dmitry, and Sergey Pogarsky. "Microstrip Monopole Antenna with Complicated Topology." In Advances in Information and Communication Technology and Systems, 394–403. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58359-0_22.
Full textLim, M. C., S. K. A. Rahim, M. I. Sabran, and A. A. Eteng. "Monopole Ellipse Antenna for Ultra-Wideband Applications." In Theory and Applications of Applied Electromagnetics, 137–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_15.
Full textAminu-Baba, Murtala, Mohammad Kamal A. Rahim, Farid Zubir, Mohd Fairus Mohd Yusoff, and Noor Asmawati Samsuri. "Wideband Monopole Antenna with Rotational Circular SRR." In 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, 419–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6447-1_53.
Full textPrasad, K. V., M. V. S. Prasad, and Padarti Vijaya Kumar. "Monopole Antenna for UWB Applications with DGS." In Algorithms for Intelligent Systems, 229–36. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2109-3_21.
Full textJain, Preeti, Bhupendra Singh, Sanjeev Yadav, and Ashu Verma. "A Semicircular Monopole Antenna for Ultra-wideband Applications." In Advances in Intelligent Systems and Computing, 339–45. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0129-1_36.
Full textAshok Kumar, S., and T. Shanmuganantham. "Implanted CPW Fed Monopole Antenna for Biomedical Applications." In Advances in Computing and Information Technology, 97–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31600-5_10.
Full textMahmood, Faraz, Syed Muhammad Usman Ali, Mahmood Alam, and Magnus Willander. "Design of WLAN Patch and UWB Monopole Antenna." In Communications in Computer and Information Science, 295–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28962-0_29.
Full textSamanta, Susamay, Sagnik Chakrabarti, Aniket Jana, P. Soni Reddy, and Kaushik Mandal. "Miniaturized Flexible Monopole Antenna for Wearable Biomedical Applications." In Lecture Notes in Bioengineering, 415–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6915-3_41.
Full textMishra, Raj Gaurav, Ranjan Mishra, and Piyush Kuchhal. "Design of Broadband Monopole Microstrip Antenna Using Rectangular Slot." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 683–88. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_78.
Full textConference papers on the topic "Monopole antenna"
James, Sagil, Shubham Birar, Riken Parekh, Kushal Jain, and Kiran George. "Preliminary Study on Fractal-Based Monopole Antenna Fabricated Using 3D Polymer Printing and Selective Electrodeposition Process." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2901.
Full textLi Jian-Ying, Tan Peng-Khiang, and Gan Yeow-Beng. "Broadband printed monopole antenna." In 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, 2006. http://dx.doi.org/10.1109/aps.2006.1710885.
Full textParyani, Rajesh C., and Rod Waterhouse. "Wideband semielliptical monopole antenna." In MILCOM 2011 - 2011 IEEE Military Communications Conference. IEEE, 2011. http://dx.doi.org/10.1109/milcom.2011.6127714.
Full textXing, Lei, Yi Huang, Saqer S. Alja'afreh, and Steve J. Boyes. "A monopole water antenna." In 2012 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2012. http://dx.doi.org/10.1109/lapc.2012.6402985.
Full textSivalingam, P., and Sooliam Ooi. "Electronically tunable monopole antenna." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4620065.
Full textLandeau, Thomas, Onofrio Losito, Giuseppe Palma, Vincenza Portosi, Alain Jouanneaux, and Franceso Prudenzano. "Multiple rhombus monopole antenna." In 2015 German Microwave Conference (GeMiC). IEEE, 2015. http://dx.doi.org/10.1109/gemic.2015.7107829.
Full textShukla, Saurabh, and A. R. Harish. "Solomon Knot Monopole Antenna." In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP). IEEE, 2018. http://dx.doi.org/10.1109/incap.2018.8770925.
Full textIncesulu, Hakan, Gul Ulutas, Hakan Bilge, S. Taha Imeci, and Tahsin Durak. "F-shaped monopole antenna." In 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES). IEEE, 2017. http://dx.doi.org/10.23919/ropaces.2017.7916043.
Full textAmmann, M. J. "Square planar monopole antenna." In IEE National Conference on Antennas and Propagation. IEE, 1999. http://dx.doi.org/10.1049/cp:19990010.
Full textKaur, I., N. Khan, P. Padamlata, and S. Sumit. "Dielectric Resonator Antenna Loaded with Monopole Antenna." In 2013 Third International Conference on Advanced Computing & Communication Technologies (ACCT 2013). IEEE, 2013. http://dx.doi.org/10.1109/acct.2013.30.
Full textReports on the topic "Monopole antenna"
Mohamed, Darwish A., and Ramakrishna Janaswamy. Design of a Continuous Resistively Loaded Monopole Antenna. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265852.
Full textElliot, P. G., E. N. Rosario, and R. J. Davis. Novel Quadrifilar Helix Antenna Combining GNSS, Iridium, and a UHF Communications Monopole. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada562143.
Full textZaghloul, Amir I., Youn M. Lee, Gregory A. Mitchell, and Theodore K. Anthony. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada608706.
Full textDoerry, Armin, and Douglas Bickel. Two-Channel Monopulse Antenna Null Steering. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1617831.
Full textRivera, David F., and John P. Casey. Approximate Capacitance Formulas for Electrically Small Tubular Monopole Antennas. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada302235.
Full textCrull, E., C. Brown, Jr, M. Perkins, and M. Ong. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/945757.
Full textBrock, Billy C., and Steven E. Allen. Correcting Cross-polarization Monopulse Response of Reflector Antennas. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1433066.
Full textDoerry, Armin W., and Douglas L. Bickel. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1183360.
Full textCamell, D. G. NIST calibration procedure for vertically polarized monopole antennas, 30 kHz to 300 MHz. Gaithersburg, MD: National Bureau of Standards, 1991. http://dx.doi.org/10.6028/nist.tn.1347.
Full text