Academic literature on the topic 'Monte Carlo Metropolis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monte Carlo Metropolis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monte Carlo Metropolis"
Owen, A. B., and S. D. Tribble. "A quasi-Monte Carlo Metropolis algorithm." Proceedings of the National Academy of Sciences 102, no. 25 (June 13, 2005): 8844–49. http://dx.doi.org/10.1073/pnas.0409596102.
Full textMakarova, K. V., A. G. Makarov, M. A. Padalko, V. S. Strongin, and K. V. Nefedev. "Multispin Monte Carlo Method." Dal'nevostochnyi Matematicheskii Zhurnal 20, no. 2 (November 25, 2020): 212–20. http://dx.doi.org/10.47910/femj202020.
Full textda Silva, Cesar R. S. "Optimizing Metropolis Monte Carlo simulations of semiconductors." Computer Physics Communications 153, no. 3 (July 2003): 392–96. http://dx.doi.org/10.1016/s0010-4655(03)00225-x.
Full textRensburg, E. J. Janse van, and N. Madras. "Metropolis Monte Carlo simulation of lattice animals." Journal of Physics A: Mathematical and General 30, no. 23 (December 7, 1997): 8035–66. http://dx.doi.org/10.1088/0305-4470/30/23/007.
Full textMathé, Peter, and Erich Novak. "Simple Monte Carlo and the Metropolis algorithm." Journal of Complexity 23, no. 4-6 (August 2007): 673–96. http://dx.doi.org/10.1016/j.jco.2007.05.002.
Full textMüller, Christian, Fabian Weysser, Thomas Mrziglod, and Andreas Schuppert. "Markov-Chain Monte-Carlo methods and non-identifiabilities." Monte Carlo Methods and Applications 24, no. 3 (September 1, 2018): 203–14. http://dx.doi.org/10.1515/mcma-2018-0018.
Full textPetrila, Iulian, and Vasile Manta. "Metropolis Monte Carlo analysis of all-optical switching." Computer Physics Communications 185, no. 11 (November 2014): 2874–78. http://dx.doi.org/10.1016/j.cpc.2014.07.008.
Full textKamatani, K. "Ergodicity of Markov chain Monte Carlo with reversible proposal." Journal of Applied Probability 54, no. 2 (June 2017): 638–54. http://dx.doi.org/10.1017/jpr.2017.22.
Full textSCHULTE, MELANIE, and CAROLINE DROPE. "3D ISING NONUNIVERSALITY: A MONTE CARLO STUDY." International Journal of Modern Physics C 16, no. 08 (August 2005): 1217–24. http://dx.doi.org/10.1142/s0129183105007844.
Full textDILGER, H. "TOPOLOGICAL ZERO MODES IN MONTE CARLO SIMULATIONS." International Journal of Modern Physics C 06, no. 01 (February 1995): 123–34. http://dx.doi.org/10.1142/s0129183195000101.
Full textDissertations / Theses on the topic "Monte Carlo Metropolis"
Edström, Filip. "Parametrization of Reactive Force Field using Metropolis Monte Carlo." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-161972.
Full textZeppilli, Giulia. "Alcune applicazioni del Metodo Monte Carlo." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3091/.
Full textRönnby, Karl. "Monte Carlo Simulations for Chemical Systems." Thesis, Linköpings universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132811.
Full textGraham, Matthew McKenzie. "Auxiliary variable Markov chain Monte Carlo methods." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28962.
Full textPaixão, Everton Luiz Martins da. "Estudos de nanoestruturas magnéticas - nanodiscos com impurezas e nanofitas - Via Monte Carlo Metropolis." Universidade Federal de Juiz de Fora (UFJF), 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/4894.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-26T19:03:05Z (GMT) No. of bitstreams: 1 evertonluizmartinsdapaixao.pdf: 7260792 bytes, checksum: 8a1a1accd3cfb65d925f1429e761f688 (MD5)
Made available in DSpace on 2017-06-26T19:03:05Z (GMT). No. of bitstreams: 1 evertonluizmartinsdapaixao.pdf: 7260792 bytes, checksum: 8a1a1accd3cfb65d925f1429e761f688 (MD5) Previous issue date: 2013-04-19
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho usamos o método de Monte Carlo Metropolis aplicado em sistemas magnéticos para estudar nanoestruturas como nanodiscos e nanofios de Permalloy. Dividimos em duas partes. Primeiramente, estudou-se o comportamento do núcleo do vórtice rodeado por anéis de impurezas em nanodiscos de permalloy. Variamos o raio e a espessura dos anéis e medimos o limite do campo aplicado para que o núcleo do vórtice passe através destes anéis. Em segundo lugar, temos estudado os estados fundamentais (de menor energia) para nanofios para uma pequena região do espaço de fase. Podemos identificar as configurações de rotação associadas a estes estados.
In this work we have used Monte Carlo Metropolis method applied in magnetic systems to study nanostructures like permalloy nanodisks and nanowires. We divided it in two parts. First, we have studied the behavior of the vortex core surrounded by rings of the impurities in permalloy nanodisks. We have varied the radius and the thickness of the rings and we measure the limit of the applied field for that the vortex core passes through the ring. Second, we have studied the ground states (lowest-energy state) for nanowires to a small region of the phase space. We can identify the spin configurations associated to the these states.
Ounaissi, Daoud. "Méthodes quasi-Monte Carlo et Monte Carlo : application aux calculs des estimateurs Lasso et Lasso bayésien." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10043/document.
Full textThe thesis contains 6 chapters. The first chapter contains an introduction to linear regression, the Lasso and the Bayesian Lasso problems. Chapter 2 recalls the convex optimization algorithms and presents the Fista algorithm for calculating the Lasso estimator. The properties of the convergence of this algorithm is also given in this chapter using the entropy estimator and Pitman-Yor estimator. Chapter 3 is devoted to comparison of Monte Carlo and quasi-Monte Carlo methods in numerical calculations of Bayesian Lasso. It comes out of this comparison that the Hammersely points give the best results. Chapter 4 gives a geometric interpretation of the partition function of the Bayesian lasso expressed as a function of the incomplete Gamma function. This allowed us to give a convergence criterion for the Metropolis Hastings algorithm. Chapter 5 presents the Bayesian estimator as the law limit a multivariate stochastic differential equation. This allowed us to calculate the Bayesian Lasso using numerical schemes semi-implicit and explicit Euler and methods of Monte Carlo, Monte Carlo multilevel (MLMC) and Metropolis Hastings algorithm. Comparing the calculation costs shows the couple (semi-implicit Euler scheme, MLMC) wins against the other couples (scheme method). Finally in chapter 6 we found the Lasso convergence rate of the Bayesian Lasso when the signal / noise ratio is constant and when the noise tends to 0. This allowed us to provide a new criteria for the convergence of the Metropolis algorithm Hastings
Cunha, João Victor de Souza. "Aplicação de Monte Carlo para a geração de ensembles e análise termodinâmica da interação biomolecular." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-25112016-143220/.
Full textThe molecular interactions, especially the ones with a non-covalent nature, are key processes in general aspects of cellular and molecular biology, including cellular communication and velocity and specificity of enzymatic reactions. So, there is a strong need for studies and development of methods for the calculation of the affinity on interaction processes, since these have a wide range of applications like rational drug design. The free energy of binding is the most important measure among the affinity measurements. It can be calculated by quick computational means, but lacking on strong theoretical basis or by complex calculations using molecular dynamics, where one can compute accurate results but at the price of an increased computer power. The aim of this project is to evaluate a computationally inexpensive model which can improve the results from molecular docking simulations. For this end, the Monte Carlo method is implemented to sample different ligand configurations inside the macromolecular binding site. The evaluation of this methodology showed that is possible to calculate entropy and enthalpy, along analyzing the interactive capacity between receptor-ligands complexes in a satisfactory way for the bacteriophage T4.
Bäckström, Nils, Jonathan Löfgren, and Vilhelm Rydén. "Study of Magnetic Nanostructures using Micromagnetic Simulations and Monte Carlo Methods." Thesis, Uppsala universitet, Materialfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227804.
Full textLima, J?nior Francisco Biagione de. "Simula??es de Monte Carlo para os modelos Ising e Blume-Capel em redes complexa." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18606.
Full textWe studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model
?Neste trabalho estudamos o modelo de Ising ferromagn?tico com spin-1/2 e o modelo Blume-Capel com spin-1, ? > 0 em rede mundo pequeno, usando simula??o computacional atrav?s do algoritmo de Metropolis. Calculamos grandezas macrosc?picas do sistema, tais como a energia interna, a magnetiza??o, o calor espec?fico, a susceptibilidade magn?tica e o cumulante de Binder. Encontramos para o modelo de Ising o mesmo resultado obtido pelos Coreanos H. Hong, Beom Jun Kim e M. Y. Choi [6] e um comportamento cr?tico similar o modelo Blume-Capel.
Caballero, Nolte Rafael Eduardo. "Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8646.
Full textAn Ising model is studied, taking into account short and long range interactions, as well as the possible effect of the system surface and its shape on the magnetic properties of the material. This is done to investigate the behavior of systems composed of nanoparticles ordered in a matrix. In addition, the role of the relationship between the number of particles on the surface and those in the volume of the matrix with respect to the behavior of system hysteresis is analyzed.
Tesis
Books on the topic "Monte Carlo Metropolis"
Allen, Michael P., and Dominic J. Tildesley. Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0004.
Full textCoolen, A. C. C., A. Annibale, and E. S. Roberts. Markov Chain Monte Carlo sampling of graphs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0006.
Full textThe Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm (AIP Conference Proceedings). American Institute of Physics, 2003.
Find full textThe Monte Carlo method in the physical sciences: Celebrating the 50th anniversary of the Metropolis Algorithm : Los Alamos, New Mexico, 9-11 June 2003. Melville, N.Y: American Institute of Physics, 2003.
Find full textBook chapters on the topic "Monte Carlo Metropolis"
Barbu, Adrian, and Song-Chun Zhu. "Metropolis Methods and Variants." In Monte Carlo Methods, 71–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2971-5_4.
Full textJuarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Metropolis Monte Carlo Method." In Encyclopedia of Nanotechnology, 1369. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100410.
Full textBeskos, Alexandros, and Andrew Stuart. "Computational Complexity of Metropolis-Hastings Methods in High Dimensions." In Monte Carlo and Quasi-Monte Carlo Methods 2008, 61–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04107-5_4.
Full textRobert, Christian P., and George Casella. "Metropolis–Hastings Algorithms." In Introducing Monte Carlo Methods with R, 167–97. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1576-4_6.
Full textRobert, Christian P., and George Casella. "Algorithmes de Metropolis-Hastings." In Méthodes de Monte-Carlo avec R, 141–71. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0181-0_6.
Full textWinkler, Gerhard. "Metropolis Algorithms." In Image Analysis, Random Fields and Dynamic Monte Carlo Methods, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97522-6_9.
Full textWinkler, Gerhard. "Metropolis Algorithms." In Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 179–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55760-6_11.
Full textTanner, Martin A. "Markov Chain Monte Carlo: The Gibbs Sampler and the Metropolis Algorithm." In Tools for Statistical Inference, 102–46. New York, NY: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-0192-9_6.
Full textTanner, Martin A. "Markov Chain Monte Carlo: The Gibbs Sampler and the Metropolis Algorithm." In Tools for Statistical Inference, 137–92. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-4024-2_6.
Full text"Metropolis-Hastings algorithms." In Markov Chain Monte Carlo, 209–54. Chapman and Hall/CRC, 2006. http://dx.doi.org/10.1201/9781482296426-9.
Full textConference papers on the topic "Monte Carlo Metropolis"
Amini, Abolfazl M. "Metropolis Monte Carlo annealing." In AeroSense 2000, edited by Stephen K. Park and Zia-ur Rahman. SPIE, 2000. http://dx.doi.org/10.1117/12.390481.
Full textAmini, Abolfazl M. "Metropolis Monte Carlo deconvolution." In AeroSense '99, edited by Stephen K. Park and Richard D. Juday. SPIE, 1999. http://dx.doi.org/10.1117/12.354714.
Full textAmini, Abolfazl M. "Review of metropolis Monte Carlo image enhancements." In SPIE Defense, Security, and Sensing, edited by Zia-ur Rahman, Stephen E. Reichenbach, and Mark A. Neifeld. SPIE, 2011. http://dx.doi.org/10.1117/12.883986.
Full textCeperley, D. M. "Metropolis Methods for Quantum Monte Carlo Simulations." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632120.
Full textLandau, David P. "The Metropolis Monte Carlo Method in Statistical Physics." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632124.
Full textWilding, Nigel B. "Phase Switch Monte Carlo." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632147.
Full textFrenkel, D. "Biased Monte Carlo Methods." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632121.
Full textOkamoto, Yuko. "Metropolis Algorithms in Generalized Ensemble." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632136.
Full textDewing, Mark. "Metropolis with noise: The penalty method." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632154.
Full textNovotny, M. A. "Algorithms for Faster and Larger Dynamic Metropolis Simulations." In THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP, 2003. http://dx.doi.org/10.1063/1.1632135.
Full textReports on the topic "Monte Carlo Metropolis"
Bates, Cameron Russell, and Edward Allen Mckigney. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417145.
Full text