Dissertations / Theses on the topic 'Monte Carlo Metropolis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Monte Carlo Metropolis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Edström, Filip. "Parametrization of Reactive Force Field using Metropolis Monte Carlo." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-161972.
Full textZeppilli, Giulia. "Alcune applicazioni del Metodo Monte Carlo." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3091/.
Full textRönnby, Karl. "Monte Carlo Simulations for Chemical Systems." Thesis, Linköpings universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132811.
Full textGraham, Matthew McKenzie. "Auxiliary variable Markov chain Monte Carlo methods." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28962.
Full textPaixão, Everton Luiz Martins da. "Estudos de nanoestruturas magnéticas - nanodiscos com impurezas e nanofitas - Via Monte Carlo Metropolis." Universidade Federal de Juiz de Fora (UFJF), 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/4894.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-26T19:03:05Z (GMT) No. of bitstreams: 1 evertonluizmartinsdapaixao.pdf: 7260792 bytes, checksum: 8a1a1accd3cfb65d925f1429e761f688 (MD5)
Made available in DSpace on 2017-06-26T19:03:05Z (GMT). No. of bitstreams: 1 evertonluizmartinsdapaixao.pdf: 7260792 bytes, checksum: 8a1a1accd3cfb65d925f1429e761f688 (MD5) Previous issue date: 2013-04-19
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho usamos o método de Monte Carlo Metropolis aplicado em sistemas magnéticos para estudar nanoestruturas como nanodiscos e nanofios de Permalloy. Dividimos em duas partes. Primeiramente, estudou-se o comportamento do núcleo do vórtice rodeado por anéis de impurezas em nanodiscos de permalloy. Variamos o raio e a espessura dos anéis e medimos o limite do campo aplicado para que o núcleo do vórtice passe através destes anéis. Em segundo lugar, temos estudado os estados fundamentais (de menor energia) para nanofios para uma pequena região do espaço de fase. Podemos identificar as configurações de rotação associadas a estes estados.
In this work we have used Monte Carlo Metropolis method applied in magnetic systems to study nanostructures like permalloy nanodisks and nanowires. We divided it in two parts. First, we have studied the behavior of the vortex core surrounded by rings of the impurities in permalloy nanodisks. We have varied the radius and the thickness of the rings and we measure the limit of the applied field for that the vortex core passes through the ring. Second, we have studied the ground states (lowest-energy state) for nanowires to a small region of the phase space. We can identify the spin configurations associated to the these states.
Ounaissi, Daoud. "Méthodes quasi-Monte Carlo et Monte Carlo : application aux calculs des estimateurs Lasso et Lasso bayésien." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10043/document.
Full textThe thesis contains 6 chapters. The first chapter contains an introduction to linear regression, the Lasso and the Bayesian Lasso problems. Chapter 2 recalls the convex optimization algorithms and presents the Fista algorithm for calculating the Lasso estimator. The properties of the convergence of this algorithm is also given in this chapter using the entropy estimator and Pitman-Yor estimator. Chapter 3 is devoted to comparison of Monte Carlo and quasi-Monte Carlo methods in numerical calculations of Bayesian Lasso. It comes out of this comparison that the Hammersely points give the best results. Chapter 4 gives a geometric interpretation of the partition function of the Bayesian lasso expressed as a function of the incomplete Gamma function. This allowed us to give a convergence criterion for the Metropolis Hastings algorithm. Chapter 5 presents the Bayesian estimator as the law limit a multivariate stochastic differential equation. This allowed us to calculate the Bayesian Lasso using numerical schemes semi-implicit and explicit Euler and methods of Monte Carlo, Monte Carlo multilevel (MLMC) and Metropolis Hastings algorithm. Comparing the calculation costs shows the couple (semi-implicit Euler scheme, MLMC) wins against the other couples (scheme method). Finally in chapter 6 we found the Lasso convergence rate of the Bayesian Lasso when the signal / noise ratio is constant and when the noise tends to 0. This allowed us to provide a new criteria for the convergence of the Metropolis algorithm Hastings
Cunha, João Victor de Souza. "Aplicação de Monte Carlo para a geração de ensembles e análise termodinâmica da interação biomolecular." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-25112016-143220/.
Full textThe molecular interactions, especially the ones with a non-covalent nature, are key processes in general aspects of cellular and molecular biology, including cellular communication and velocity and specificity of enzymatic reactions. So, there is a strong need for studies and development of methods for the calculation of the affinity on interaction processes, since these have a wide range of applications like rational drug design. The free energy of binding is the most important measure among the affinity measurements. It can be calculated by quick computational means, but lacking on strong theoretical basis or by complex calculations using molecular dynamics, where one can compute accurate results but at the price of an increased computer power. The aim of this project is to evaluate a computationally inexpensive model which can improve the results from molecular docking simulations. For this end, the Monte Carlo method is implemented to sample different ligand configurations inside the macromolecular binding site. The evaluation of this methodology showed that is possible to calculate entropy and enthalpy, along analyzing the interactive capacity between receptor-ligands complexes in a satisfactory way for the bacteriophage T4.
Bäckström, Nils, Jonathan Löfgren, and Vilhelm Rydén. "Study of Magnetic Nanostructures using Micromagnetic Simulations and Monte Carlo Methods." Thesis, Uppsala universitet, Materialfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227804.
Full textLima, J?nior Francisco Biagione de. "Simula??es de Monte Carlo para os modelos Ising e Blume-Capel em redes complexa." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18606.
Full textWe studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model
?Neste trabalho estudamos o modelo de Ising ferromagn?tico com spin-1/2 e o modelo Blume-Capel com spin-1, ? > 0 em rede mundo pequeno, usando simula??o computacional atrav?s do algoritmo de Metropolis. Calculamos grandezas macrosc?picas do sistema, tais como a energia interna, a magnetiza??o, o calor espec?fico, a susceptibilidade magn?tica e o cumulante de Binder. Encontramos para o modelo de Ising o mesmo resultado obtido pelos Coreanos H. Hong, Beom Jun Kim e M. Y. Choi [6] e um comportamento cr?tico similar o modelo Blume-Capel.
Caballero, Nolte Rafael Eduardo. "Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8646.
Full textAn Ising model is studied, taking into account short and long range interactions, as well as the possible effect of the system surface and its shape on the magnetic properties of the material. This is done to investigate the behavior of systems composed of nanoparticles ordered in a matrix. In addition, the role of the relationship between the number of particles on the surface and those in the volume of the matrix with respect to the behavior of system hysteresis is analyzed.
Tesis
Potter, Christopher C. J. "Kernel Selection for Convergence and Efficiency in Markov Chain Monte Carol." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/249.
Full textWaseda, Osamu. "Atomic scale investigation of ageing in metals." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI150/document.
Full textThe objective of the thesis was to understand the microscopic features at the origin of ageing in metals. The originality of this contribution was the com- bination of three complementary computational techniques : (1) Metropolis Monte Carlo (MMC), (2) Atomic Kinetic Monte Carlo (AKMC), and, (3) Molecular Dynamics (MD). It consisted of four main sections : Firstly the ordering occurring in bulk alpha-iron via MMC and MD was studied. Various carbon contents and temperatures were investigated in order to obtain a “phase diagram”. Secondly, the generation of systems containing a dislocation interacting with many carbon atoms, namely a Cottrell Atmosphere, with MMC technique was described. The equilibrium structure of the atmosphere and the stress field around the atmospheres proves that the stress field around the dislocation was affected but not cancelled out by the atmosphere. Thirdly, the kinetics of the carbon migration and Cottrell atmosphere evolution were investigated via AKMC. The activation energies for carbon atom migration were calculated from the local stress field and the arrangement of the neigh- bouring carbon atoms. Lastly, an application of the combined use of MMC and MD to describe grain boundary segregation of solute atoms in fcc nickel was presented. The grain growth was inhibited due to the solute atoms in the grain boundary
Dahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Almeida, Alexandre Barbosa de. "Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5872.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-09T11:57:53Z (GMT) No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-09T11:57:53Z (GMT). No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-06-17
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis.
As proteínas são vitais para as funções biológicas de todos os seres na Terra. Entretanto, somente apresentam função biológica ativa quando encontram-se em sua estrutura nativa, que é o seu estado de mínima energia. Portanto, a funcionalidade de uma proteína depende, quase que exclusivamente, do tamanho e da forma de sua conformação nativa. Porém, de todas as proteínas conhecidas no mundo, menos de 1% tem a sua estrutura resolvida. Deste modo, vários métodos de determinação de estruturas de proteínas têm sido propostos, tanto para experimentos in vitro quanto in silico. Este trabalho propõe um novo método in silico denominado Monte Carlo com Dominância, o qual aborda o problema da predição de estrutura de proteínas sob o ponto de vista ab initio e de otimização multiobjetivo, considerando, simultaneamente, os aspectos energéticos e estruturais da proteína. Para o tratamento ab initio utiliza-se o software GROMACS para executar as simulações de Dinâmica Molecular, enquanto que para o problema da otimização multiobjetivo emprega-se o framework ProtPred-GROMACS (2PG), o qual utiliza algoritmos genéticos como técnica de soluções heurísticas. O Monte Carlo com Dominância, nesse sentido, é como uma variante do tradicional método de Monte Carlo Metropolis. Assim, o objetivo é o de verificar se a predição da estrutura terciária de proteínas é aprimorada levando-se em conta também os aspectos estruturais. O critério energético de Metropolis e os critérios energéticos e estruturais da Dominância foram comparados empregando o cálculo de RMSD entre as estruturas preditas e as nativas. Foi verificado que o método de Monte Carlo com Dominância obteve melhores soluções para duas de três proteínas analisadas, chegando a cerca de 53% de diferença da predição por Metropolis.
Rizzi, Leandro Gutierrez. "Simulações numéricas de Monte Carlo aplicadas no estudo das transições de fase do modelo de Ising dipolar bidimensional." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-23052009-134513/.
Full textTwo-dimensional spin model with nearest-neighbor ferromagnetic interaction and long-range dipolar interactions exhibit a rich phase diagram, whose characteristics have been exploited by several studies in the recent literature. Furthermore, the possibility of explain observed phenomena in ultrathin magnetic films, which have many technological applications, also motivates the study of this model. The presence of dipolar interaction term changes the ferromagnetic ground state expected for the pure Ising model to a series of striped phases, which consist of ferromagnetic domains of width $h$ with opposite magnetization. The width of the stripes depends on the ratio $\\delta$ of the ferromagnetic and dipolar couplings. Monte Carlo simulations and reweighting multiple histograms techniques allow us to identify the finite-size critical temperatures of the phase transitions when $\\delta=2$, which corresponds to $h=2$. We calculate, for different lattice sizes, the specific heat and susceptibility of the order parameter around the transition temperatures by means of reweighting techniques. This allows us to identify in these observables, as functions of temperature, the distinct maxima and thereby to estimate the finite-size critical temperatures with high precision. We present numerical evidence of the existence of a Ising nematic phase for large lattice sizes. Our results show that simulations need to be performed for lattice sizes at least as large as $L=48$ to clearly observe the Ising nematic phase. To access how the long-range dipolar interaction may affect physical estimates we also evaluate the integrated autocorrelation time in energy time series. This allows us to infer how severe is the critical slowing down for this system with long-range interaction and nearby thermodynamic phase transitions. The results obtained using a local update algorithm are compared with results obtained using the multicanonical algorithm.
Michel, Manon. "Irreversible Markov chains by the factorized Metropolis filter : algorithms and applications in particle systems and spin models." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE039/document.
Full textThis thesis deals with the development and application in statistical physics of a general framework for irreversible and rejection-free Markov-chain Monte Carlo methods, through the implementation of the factorized Metropolis filter and the lifting concept. The first two chapters present the Markov-chain Monte Carlo method and its different implementations in statistical physics. One of the main limitations of Markov-chain Monte Carlo methods arises around phase transitions, where phenomena of dynamical slowing down greatly impede the thermalization of the system. The third chapter introduces the new class of irreversible factorized Metropolis algorithms. Building on the concept of lifting of Markov chains, the factorized Metropolis filter allows to decompose a multidimensional potential into several unidimensional ones. From there, it is possible to define a rejection-free and completely irreversible Markov-chain Monte Carlo algorithm. The fourth chapter reviews the performance of the irreversible factorized algorithm in a wide variety of systems. Clear accelerations of the thermalization time are observed in bidimensional soft-particle systems, bidimensional ferromagnetic XY spin systems and three-dimensional XY spin glasses. Finally, an important reduction of the critical slowing down is exhibited in three-dimensional ferromagnetic Heisenberg spin systems
Feldt, Jonas. "Hybrid Simulation Methods for Systems in Condensed Phase." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E3F2-B.
Full textLindahl, John, and Douglas Persson. "Data-driven test case design of automatic test cases using Markov chains and a Markov chain Monte Carlo method." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43498.
Full textToyinbo, Peter Ayo. "Additive Latent Variable (ALV) Modeling: Assessing Variation in Intervention Impact in Randomized Field Trials." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/3673.
Full textFu, Shuting. "Bayesian Logistic Regression Model with Integrated Multivariate Normal Approximation for Big Data." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/451.
Full textAlves, Andressa Schneider. "Algoritmos para o encaixe de moldes com formato irregular em tecidos listrados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/142744.
Full textThis thesis proposes the solution for the packing problem of patterns on striped fabric in clothing industry. The patterns are pieces with irregular form that should be placed on raw material which is, in this case, the fabric. This fabric is cut after packing. In the specific problem of packing on striped fabric, the position that patterns are put in the fabric should ensure that, after the clothing sewing, the stripes should present continuity. Thus, the theoretical foundation of this project includes subjects about fashion and clothing design, such as types and rapports of striped fabric, and the possibilities of rotation and the correct place to put the patterns on striped fabric. In the theoretical foundation, there are also subjects about research in combinatorial optimization as: characteristics about bi-dimensional packing and cutting problems and algorithms used for several authors to solve the problem. In addition, the Markov Chain Monte Carlo method and the Metropolis-Hastings algorithm are described at end of theoretical foundation. Based on the bibliographic research, two different algorithms for the packing problem with striped fabric are proposed: algorithm with pre-processing step and algorithm of searching the best packing using the Metropolis-Hastings algorithm. Both algorithms are implemented in the Striped Riscare software, which is a continuity of Riscare software for clear fabrics developed in the Masters degree of the author. Both algorithms performances are tested with six literature benchmark problems and a new problem called “male shirt” is proposed here. The benchmark problems of literature were iniatially proposed for clear raw material and the male shirt problem, specifically for striped fabrics. Between the two developed algorithms, the algorithm of searching the best packing has shown better results with better efficiencies of the fabric usage for all the problems tested. When compared to the best results published in the literature for clear raw material, the algorithm of searching the best packing has shown packings with lower efficiencies. However, it showed results higher than recommended for the specific literature of fashion design for patterned fabrics.
Szymczak, Marcin. "Programming language semantics as a foundation for Bayesian inference." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28993.
Full textJersild, Annika Lee. "Relative Role of Uncertainty for Predictions of Future Southeastern U.S. Pine Carbon Cycling." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71748.
Full textMaster of Science
Al-Motasem, Al-Asqalani Ahmed Tamer. "Nanoclusters in Diluted Fe-Based Alloys Containing Vacancies, Copper and Nickel: Structure, Energetics and Thermodynamics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89355.
Full textJiang, Yu. "Inference and prediction in a multiple structural break model of economic time series." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/244.
Full textFrühwirth-Schnatter, Sylvia, and Rudolf Frühwirth. "Bayesian Inference in the Multinomial Logit Model." Austrian Statistical Society, 2012. http://epub.wu.ac.at/5629/1/186%2D751%2D1%2DSM.pdf.
Full textVASCONCELOS, Josimar Mendes de. "Equações simultâneas no contexto clássico e bayesiano: uma abordagem à produção de soja." Universidade Federal Rural de Pernambuco, 2011. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5012.
Full textMade available in DSpace on 2016-07-07T12:44:03Z (GMT). No. of bitstreams: 1 Josimar Mendes de Vasconcelos.pdf: 4725831 bytes, checksum: 716f4b6bc6100003772271db252915b7 (MD5) Previous issue date: 2011-08-08
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
The last years has increased the quantity of researchers and search scientific in the plantation, production and value of the soybeans in the Brazil, in grain. In front of this, the present dissertation looks for to analyze the data and estimate models that explain, of satisfactory form, the variability observed of the quantity produced and value of the production of soya in grain in the Brazil, in the field of the study. For the development of these analyses is used the classical and Bayesian inference, in the context of simultaneous equations by the tools of indirect square minimum in two practices. In the classical inference uses the estimator of square minima in two practices. In the Bayesian inference worked the method of Mountain Carlo via Chain of Markov with the algorithms of Gibbs and Metropolis-Hastings by means of the technician of simultaneous equations. In the study, consider the variable area harvested, quantity produced, value of the production and gross inner product, in which it adjusted the model with the variable answer quantity produced and afterwards the another variable answer value of the production for finally do the corrections and obtain the final result, in the classical and Bayesian method. Through of the detours normalized, statistics of the proof-t, criteria of information Akaike and Schwarz normalized stands out the good application of the method of Mountain Carlo via Chain of Markov by the algorithm of Gibbs, also is an efficient method in the modelado and of easy implementation in the statistical softwares R & WinBUGS, as they already exist smart libraries to compile the method. Therefore, it suggests work the method of Mountain Carlo via chain of Markov through the method of Gibbs to estimate the production of soya in grain.
Nos últimos anos tem aumentado a quantidade de pesquisadores e pesquisas científicas na plantação, produção e valor de soja no Brasil, em grão. Diante disso, a presente dissertação busca analisar os dados e ajustar modelos que expliquem, de forma satisfatória, a variabilidade observada da quantidade produzida e valor da produção de soja em grão no Brasil, no campo do estudo. Para o desenvolvimento dessas análises é utilizada a inferência clássica e bayesiana, no contexto de equações simultâneas através da ferramenta de mínimos quadrados em dois estágios. Na inferência clássica utiliza-se o estimador de mínimos quadrados em dois estágios. Na inferência bayesiana trabalhou-se o método de Monte Carlo via Cadeia de Markov com os algoritmos de Gibbs e Metropolis-Hastings por meio da técnica de equações simultâneas. No estudo, consideram-se as variáveis área colhida, quantidade produzida, valor da produção e produto interno bruto, no qual ajustou-se o modelo com a variável resposta quantidade produzida e depois a variável resposta valor da produção para finalmente fazer as correções e obter o resultado final, no método clássico e bayesiano. Através, dos desvios padrão, estatística do teste-t, critérios de informação Akaike e Schwarz normalizados destaca-se a boa aplicação do método de Monte Carlo via Cadeia de Markov pelo algoritmo de Gibbs, também é um método eficiente na modelagem e de fácil implementação nos softwares estatísticos R & WinBUGS, pois já existem bibliotecas prontas para compilar o método. Portanto, sugere-se trabalhar o método de Monte Carlo via cadeia de Markov através do método de Gibbs para estimar a produção de soja em grão, no Brasil.
Liu, Yi. "Time-Varying Coefficient Models for Recurrent Events." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/97999.
Full textPHD
Sprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces." Doctoral thesis, Universitätsbibliothek Chemnitz, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-226748.
Full textBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert
Tamatoro, Johng-Ay. "Approche stochastique de l'analyse du « residual moveout » pour la quantification de l'incertitude dans l'imagerie sismique." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3044/document.
Full textThe main goal of the seismic imaging for oil exploration and production as it is done nowadays is to provide an image of the first kilometers of the subsurface to allow the localization and an accurate estimation of hydrocarbon resources. The reservoirs where these hydrocarbons are trapped are structures which have a more or less complex geology. To characterize these reservoirs and allow the production of hydrocarbons, the geophysicist uses the depth migration which is a seismic imaging tool which serves to convert time data recorded during seismic surveys into depth images which will be exploited by the reservoir engineer with the help of the seismic interpreter and the geologist. During the depth migration, seismic events (reflectors, diffractions, faults …) are moved to their correct locations in space. Relevant depth migration requires an accurate knowledge of vertical and horizontal seismic velocity variations (velocity model). Usually the so-called Common-Image-Gathers (CIGs) serve as a tool to verify correctness of the velocity model. Often the CIGs are computed in the surface offset (distance between shot point and receiver) domain and their flatness serve as criteria of the velocity model correctness. Residual moveout (RMO) of the events on CIGs due to the ratio of migration velocity model and effective velocity model indicates incorrectness of the velocity model and is used for the velocity model updating. The post-stacked images forming the CIGs which are used as data for the RMO analysis are the results of an inverse problem and are corrupt by noises. An uncertainty analysis is necessary to improve evaluation of the results. Dealing with the uncertainty is a major issue, which supposes to help in decisions that have important social and commercial implications. The goal of this thesis is to contribute to the uncertainty analysis and its quantification in the analysis of various parameters computed during the seismic processing and particularly in RMO analysis. To reach these goals several stages were necessary. We began by appropriating the various geophysical concepts necessary for the understanding of:- the organization of the seismic data ;- the various processing ;- the various mathematical and methodological tools which are used (chapters 2 and 3). In the chapter 4, we present different tools used for the conventional RMO analysis. In the fifth one, we give a statistical interpretation of the conventional RMO analysis and we propose a stochastic approach of this analysis. This approach consists in hierarchical statistical model where the parameters are: - the variance which express the noise level in the data ;- a functional parameter which express coherency of the amplitudes along events ; - the ratio which is assume to be a random variable and not an unknown fixed parameter as it is the case in conventional approach. The adjustment of data to the model done by using smoothing methods of data, combined with the using of the wavelets for the estimation of allow to compute the posterior distribution of given the data by the empirical Bayes methods. An estimation of the parameter is obtained by using Markov Chain Monte Carlo simulations of its posterior distribution. The various quantiles of these simulations provide different estimations of . The proposed methodology is validated in the sixth chapter by its application on synthetic data and real data. A sensitivity analysis of the estimation of the parameter was done. The using of the uncertainty of this parameter to quantify the uncertainty of the spatial positions of reflectors is presented in this thesis
Joly, Jean-Luc. "Contributions à la génération aléatoire pour des classes d'automates finis." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2012/document.
Full textThe concept of automata, central to language theory, is the natural and efficient tool to apprehendvarious practical problems.The intensive use of finite automata in an algorithmic framework is illustrated by numerous researchworks.The correctness and the evaluation of performance are the two fundamental issues of algorithmics.A classic method to evaluate an algorithm is based on the controlled random generation of inputs.The work described in this thesis lies within this context and more specifically in the field of theuniform random generation of finite automata.The following presentation first proposes to design a deterministic, real time, pushdown automatagenerator. This design builds on the symbolic method. Theoretical results and an experimental studyare given.This design builds on the symbolic method. Theoretical results and an experimental study are given.A random generator of non deterministic automata then illustrates the flexibility of the Markov ChainMonte Carlo methods (MCMC) as well as the implementation of the Metropolis-Hastings algorithm tosample up to isomorphism. A result about the mixing time in the general framework is given.The MCMC sampling methods raise the problem of the mixing time in the chain. By drawing on worksalready completed to design a random generator of partially ordered automata, this work shows howvarious statistical tools can form a basis to address this issue
Sprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces." Doctoral thesis, Technische Universität Chemnitz, 2017. https://monarch.qucosa.de/id/qucosa%3A20754.
Full textBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
Fachat, André. "A Comparison of Random Walks with Different Types of Acceptance Probabilities." Doctoral thesis, Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100235.
Full textIn dieser Dissertation werden Random Walks ähnlich dem Metropolis Algorithmus untersucht. Es werden verschiedene Akzeptanzwahrscheinlichkeiten untersucht, dabei werden Metropolis, Tsallis und Threshold Accepting besonders betrachtet. Gleichgewichts- und Relaxationseigenschaften sowie Performanceaspekte im Bereich der stochastischen Optimierung werden untersucht. Die Analytische Betrachtung eines simplen, dem harmonischen Oszillator ähnlichen Systems zeigt, dass eine Reihe von Akzeptanzwahrscheinlichkeiten, eingeschlossen die oben Erwähnten, eine Gleichgewichtsverteilung ausbilden, die von einer Exponentialfunktion dominiert wird. Im letzten Kapitel wird der optimale Schedule für die Tsallis Akzeptanzwahrscheinlichkeit für eine idealisierte Barriere untersucht
Bachouch, Achref. "Numerical Computations for Backward Doubly Stochastic Differential Equations and Nonlinear Stochastic PDEs." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1034/document.
Full textThe purpose of this thesis is to study a numerical method for backward doubly stochastic differential equations (BDSDEs in short). In the last two decades, several methods were proposed to approximate solutions of standard backward stochastic differential equations. In this thesis, we propose an extension of one of these methods to the doubly stochastic framework. Our numerical method allows us to tackle a large class of nonlinear stochastic partial differential equations (SPDEs in short), thanks to their probabilistic interpretation. In the last part, we study a new particle method in the context of shielding studies
Ozkan, Pelin. "Analysis Of Stochastic And Non-stochastic Volatility Models." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605421/index.pdf.
Full textCalmet, Claire. "Inférences sur l'histoire des populations à partir de leur diversité génétique : étude de séquences démographiques de type fondation-explosion." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00288526.
Full textLa présente thèse propose une extension de la méthode d'inférence bayésienne développée en 1999 par M. Beaumont. Comme la méthode originale, (i) elle est basée sur le coalescent de Kingman avec variations d'effectif, (ii) elle utilise l'algorithme de Metropolis-Hastings pour échantillonner selon la loi a posteriori des paramètres d'intérêt et (iii) elle permet de traiter des données de typage à un ou plusieurs microsatellites indépendants. La version étendue généralise les modèles démographique et mutationnel supposés dans la méthode initiale: elle permet d'inférer les paramètres d'un modèle de fondation-explosion pour la population échantillonnée et d'un modèle mutationnel à deux phases, pour les marqueurs microsatellites typés. C'est la première fois qu'une méthode probabiliste exacte incorpore pour les microsatellites un modèle mutationnel autorisant des sauts.
Le modèle démographique et mutationnel est exploré. L'analyse de jeux de données simulés permet d'illustrer et de comparer la loi a posteriori des paramètres pour des scénarios historiques: par exemple une stabilité démographique, une croissance exponentielle et une fondation-explosion. Une typologie des lois a posteriori est proposée. Des recommandations sur l'effort de typage dans les études empiriques sont données: un unique marqueur microsatellite peut conduire à une loi a posteriori très structurée. Toutefois, les zones de forte densité a posteriori représentent des scénarios de différents types. 50 génomes haploides typés à 5 marqueurs microsatellites suffisent en revanche à détecter avec certitude (99% de la probabilité a posteriori) une histoire de fondation-explosion tranchée. Les conséquences de la violation des hypothèses du modèle démographique sont discutées, ainsi que les interactions entre processus et modèle mutationnel. En particulier, il est établi que le fait de supposer un processus mutationnel conforme au modèle SMM, alors que ce processus est de type TPM, peut générer un faux signal de déséquilibre génétique. La modélisation des sauts mutationnels permet de supprimer ce faux signal.
La méthode est succinctement appliquée à l'étude de deux histoires de fondation-explosion: l'introduction du chat Felis catus sur les îles Kerguelen et celle du surmulot Rattus norvegicus sur les îles du large de la Bretagne. Il est d'abord montré que la méthode fréquentiste développée par Cornuet et Luikart (1996) ne permet pas de détecter les fondations récentes et drastiques qu'ont connu ces populations. Cela est vraisemblablement dû à des effets contraires de la fondation et de l'explosion, sur les statistiques utilisées dans cette méthode.
La méthode bayésienne ne détecte pas non plus la fondation si l'on force une histoire démographique en marche d'escalier, pour la même raison. La fondation et l'explosion deviennent détectables si le modèle démographique les autorise. Toutefois, les dépendances entre les paramètres du modèle empêchent de les inférer marginalement avec précision. Toute information a priori sur un paramètre contraint fortement les valeurs des autres paramètres. Ce constat confirme le potentiel de populations d'histoire documentée pour l'estimation indirecte des paramètres d'un modèle de mutation des marqueurs.
Santos, Marconio Silva dos. "Modelagem estoc?stica da distribui??o de probabilidade da precipita??o pluvial via m?todos computacionalmente intensivos." PROGRAMA DE P?S-GRADUA??O EM CI?NCIAS CLIM?TICAS, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/24953.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-03-23T15:26:03Z (GMT) No. of bitstreams: 1 MarconioSilvaDosSantos_TESE.pdf: 17070388 bytes, checksum: 46702d837c8c304ffc379088625742aa (MD5)
Made available in DSpace on 2018-03-23T15:26:03Z (GMT). No. of bitstreams: 1 MarconioSilvaDosSantos_TESE.pdf: 17070388 bytes, checksum: 46702d837c8c304ffc379088625742aa (MD5) Previous issue date: 2017-11-24
Neste trabalho, ? feita uma modelagem estat?stica da precipita??o pluvial. Este ? um trabalho metodol?gico que utiliza simula??es estoc?sticas para estimar as distribui??es de probabilidades envolvidas na modelagem dessa vari?vel atmosf?rica. A fim de estimar os par?metros dessas distribui??es, foram utilizados m?todos de Monte Carlo via cadeias de Markov para gerar amostras sint?ticas de tamanho grande a partir de dados observados. Os m?todos utilizados foram o algoritmo de Metropolis-Hastings e o amostrador de Gibbs. As simula??es foram feitas sob a hip?tese de que os dias de um mesmo per?odo do ano (m?s ou esta??o chuvosa) podem ser considerados como identicamente distribu?dos em rela??o ? probabilidade de ocorrer precipita??o. Essa pesquisa possibilitou a produ??o de quatro artigos. O primeiro artigo utilizou o algoritmo de Metropolis-Hastings para modelar a probabilidade de ocorr?ncia de precipita??o em um dia qualquer do m?s. As simula??es desse artigo foram feitas com dados observados de algumas cidades brasileiras. Os demais artigos utilizaram o amostrador de Gibbs e os m?todos propostos foram aplicados em cidades da regi?o Nordeste do Brasil. No segundo artigo, as distribui??es Beta e Binomial foram utilizadas para modelar o n?mero de dias do m?s com ocorr?ncia de precipita??o. No terceiro artigo, a distribui??o de Poisson foi utilizada para modelar o n?mero de dias com valores extremos de precipita??o na esta??o chuvosa. Um m?todo alternativo para estimar esses valores extremos e sua distribui??o ? apresentado no quarto artigo, utilizando a distribui??o Gama. De acordo com os resultados dessas pesquisas, amostrador de Gibbs foi considerado adequado para estimar as distribui??es na modelagem da precipita??o em cidades para as quais h? poucos dados hist?ricos.
In this work, it was made a statistical modeling of precipitation. This is a methodological work that uses stochastic simulations to estimate the probability distributions related to this atmospheric variable. In order to estimate the parameters of these distributions, Markov chain Monte Carlo methods were used to generate large size synthetic samples from observed data. The used methods were the Metropolis-Hastings algorithm and the Gibbs sampler. The simulations were performed under the hypothesis that the days of of the same period of the year (month or rainy season) can be considered to be identically distributed concernig the probability of precipitation. This research allowed the production of four papers. The first paper used the Metropolis-Hastings algorithm to model the probability of occurrence of precipitation on any day of the month. The simulations of this paper were perfomed with observed data of some Brazilian cities. The other papers used the Gibbs sampler and the proposed methods were applied to data from cities in the Northeast Brazil. In the second paper, Beta and Binomial distributions were used to model the number of days of the month with occurrence of precipitation. In the third paper, the Poisson distribution was used to model the number of days with precipitation extreme values in the rainy season. An alternative method for estimating these extreme values and their distribution is presented in the fourth paper, using the Gamma distribution. According to the results obtained by these researches, the Gibbs sampler was considered to be adequate to estimate distributions in the modeling of precipitation on cities for which there are few historical data.
Ureten, Suzan. "Single and Multiple Emitter Localization in Cognitive Radio Networks." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35692.
Full textBylin, Johan. "Best practice of extracting magnetocaloric properties in magnetic simulations." Thesis, Uppsala universitet, Materialteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388356.
Full textEid, Abdelrahman. "Stochastic simulations for graphs and machine learning." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I018.
Full textWhile it is impractical to study the population in many domains and applications, sampling is a necessary method allows to infer information. This thesis is dedicated to develop probability sampling algorithms to infer the whole population when it is too large or impossible to be obtained. Markov chain Monte Carlo (MCMC) techniques are one of the most important tools for sampling from probability distributions especially when these distributions haveintractable normalization constants.The work of this thesis is mainly interested in graph sampling techniques. Two methods in chapter 2 are presented to sample uniform subtrees from graphs using Metropolis-Hastings algorithms. The proposed methods aim to sample trees according to a distribution from a graph where the vertices are labelled. The efficiency of these methods is proved mathematically. Additionally, simulation studies were conducted and confirmed the theoretical convergence results to the equilibrium distribution.Continuing to the work on graph sampling, a method is presented in chapter 3 to sample sets of similar vertices in an arbitrary undirected graph using the properties of the Permanental Point processes PPP. Our algorithm to sample sets of k vertices is designed to overcome the problem of computational complexity when computing the permanent by sampling a joint distribution whose marginal distribution is a kPPP.Finally in chapter 4, we use the definitions of the MCMC methods and convergence speed to estimate the kernel bandwidth used for classification in supervised Machine learning. A simple and fast method called KBER is presented to estimate the bandwidth of the Radial basis function RBF kernel using the average Ricci curvature of graphs
Γιαννόπουλος, Νικόλαος. "Μελετώντας τον αλγόριθμο Metropolis-Hastings." Thesis, 2012. http://hdl.handle.net/10889/5920.
Full textThis thesis is part of research in Computational Statistics, as we deal with the study of methods of modeling some distribution π (target distribution) and calculate complex integrals. In many real problems, where the form of π is very complex and / or the size of large state space, simulation of π can not be done with simple techniques as well as the calculation of the integrals is very difficult if not impossible to done analytically. So we resort to techniques Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC), which simulate values of random variables and estimate the integrals by appropriate functions of the simulated values. These techniques produce MC independent observations either directly from the distribution n target or a different distribution motion-g. MCMC techniques simulate Markov chains with stationary distribution and therefore the observations are dependent. As part of this work we will deal mainly with the Metropolis-Hastings algorithm is one of the greatest, if not the most important, MCMC algorithms. More specifically, in Chapter 2 is a brief reference to known techniques MC, such as Acceptance-Rejection method, the inversion method and importance sampling methods as well as techniques MCMC, as the algorithm Metropolis-Hastings, o Gibbs sampler and method Metropolis Within Gibbs. Chapter 3 is a detailed report on the algorithm Metropolis-Hastings. First, we present a brief history and then give a detailed description. Present some specific forms as well as the basic properties that characterize them. The chapter concludes with a presentation of some applications on simulated and real data. The fourth chapter deals with methods for estimating the dispersion of ergodic average, derived from the MCMC techniques. Particular reference is made to methods Batch means and Spectral Variance Estimators. Finally, Chapter 5 deals with finding a suitable proposal for the allocation algorithm Metropolis-Hastings. Although the Metropolis-Hastings algorithm can converge on any distribution motion sufficient to satisfy some basic assumptions, it is known that an appropriate selection of the distribution proposal improves the convergence of the algorithm. Determining the optimal allocation proposal for a specific distribution target is a very important but equally difficult problem. This problem has been approached in a very simplistic techniques (trial-and-error techniques) but also with adaptive algorithms that find a "good" allocation proposal automatically.
Chen, Yuxin. "Massively Parallel Dimension Independent Adaptive Metropolis." Thesis, 2015. http://hdl.handle.net/10754/552902.
Full textAtchadé, Yves F. "Quelques contributions sur les méthodes de Monte Carlo." Thèse, 2003. http://hdl.handle.net/1866/14581.
Full textJung, Maarten Lars. "Reaction Time Modeling in Bayesian Cognitive Models of Sequential Decision-Making Using Markov Chain Monte Carlo Sampling." 2020. https://tud.qucosa.de/id/qucosa%3A74048.
Full textIn dieser Arbeit wird ein neuer Ansatz zum Generieren von Reaktionszeitvorhersagen für bayesianische Modelle sequenzieller Entscheidungsprozesse vorgestellt. Der Ansatz basiert auf einem Markov-Chain-Monte-Carlo-Algorithmus, der anhand von gegebenen A-priori-Verteilungen und Likelihood-Funktionen von möglichen Handlungssequenzen Vorhersagen über die Dauer einer Entscheidung für eine dieser Handlungssequenzen erstellt. Die Plausibilität der mit diesem Algorithmus generierten Reaktionszeitvorhersagen wurde für einfache Beispielverteilungen sowie für A-priori-Verteilungen und Likelihood-Funktionen eines bayesianischen Modells zur Beschreibung von Gewohnheitslernen untersucht. Simulationen zeigten, dass die vom Markov-Chain-Monte-Carlo-Sampler erzeugten Reaktionszeitverteilungen charakteristische Eigenschaften von typischen Reaktionszeitverteilungen im Kontext sequenzieller Entscheidungsprozesse aufweisen. Das Verfahren lässt sich problemlos auf verschiedene bayesianische Modelle für Entscheidungsparadigmen mit beliebig vielen Handlungsalternativen anwenden und eröffnet damit die Möglichkeit, Reaktionszeitvorhersagen für Modelle abzuleiten, für die dies bislang nicht möglich war.
Kyimba, Eloi-Alain Kyalondawa. "Comparison of Monte Carlo Metropolis, Swendsen-Wang, and Wolff algorithms in the critical region for the 2-dimensional Ising model." 2006. http://www.lib.ncsu.edu/theses/available/etd-03152007-235327/unrestricted/etd.pdf.
Full textFontaine, Simon. "MCMC adaptatifs à essais multiples." Thèse, 2019. http://hdl.handle.net/1866/22547.
Full textDe, Freitas Allan. "A Monte-Carlo approach to dominant scatterer tracking of a single extended target in high range-resolution radar." Diss., 2013. http://hdl.handle.net/2263/33372.
Full textDissertation (MEng)--University of Pretoria, 2013.
gm2014
Electrical, Electronic and Computer Engineering
unrestricted
(6563222), Boqian Zhang. "Efficient Path and Parameter Inference for Markov Jump Processes." Thesis, 2019.
Find full textWu, Mingqi. "Population SAMC, ChIP-chip Data Analysis and Beyond." 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8752.
Full textMitsakakis, Nikolaos. "Bayesian Methods in Gaussian Graphical Models." Thesis, 2010. http://hdl.handle.net/1807/24831.
Full text