Academic literature on the topic 'Monte Carlo PENELOPE'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monte Carlo PENELOPE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Monte Carlo PENELOPE"

1

Liu, Hao Jia, and Shu Jun Zhao. "Overview of PeneloPET: A PET-Dedicated Monte Carlo Simulation Toolkit." Applied Mechanics and Materials 602-605 (August 2014): 3565–69. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.3565.

Full text
Abstract:
PeneloPET is a PET-dedicated Monte Carlo simulation toolkit, which is based on PENELOPE. This article describes the characteristics and the general process of PeneloPET simulation. Then we compare the simulation results of PeneloPET and GATE to model the GE Healthcare eXplore Vista microPET system respectively, including sensitivity and noise equivalent count rate. The results show that PeneloPET simulation data corresponds with the data from real scanners and GATE simulation, and proves PeneloPET is an accurate toolkit for PET simulation.
APA, Harvard, Vancouver, ISO, and other styles
2

González, E. R., and E. V. Bonzi. "CALCULATION OF RADIOCTIVE SPECTRUM OF ENVIRONMENTAL SAMPLES BY MONTE CARLO CODE “PENELOPE”." Anales AFA 22, no. 1 (April 5, 2010): 128–34. http://dx.doi.org/10.31527/analesafa.2011.22.1.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sempau, J., J. M. Fernández-Varea, E. Acosta, and F. Salvat. "Experimental benchmarks of the Monte Carlo code penelope." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 207, no. 2 (June 2003): 107–23. http://dx.doi.org/10.1016/s0168-583x(03)00453-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sterpin, E., F. Salvat, R. Cravens, K. Ruchala, G. H. Olivera, and S. Vynckier. "Monte Carlo simulation of helical tomotherapy with PENELOPE." Physics in Medicine and Biology 53, no. 8 (April 3, 2008): 2161–80. http://dx.doi.org/10.1088/0031-9155/53/8/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

España, S., J. L. Herraiz, E. Vicente, J. J. Vaquero, M. Desco, and J. M. Udias. "PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation." Physics in Medicine and Biology 54, no. 6 (February 25, 2009): 1723–42. http://dx.doi.org/10.1088/0031-9155/54/6/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarcke, Marcelo Menna Barreto, Carlos Ernesto Garrido Salmon, Patrícia Nicolucci, and Oswaldo Baffa. "Dosimetria 3D do Iodo-131: Estudo com Gel MAGIC-f e Código de Simulação Monte Carlo PENELOPE." Revista Brasileira de Física Médica 12, no. 2 (January 13, 2019): 39. http://dx.doi.org/10.29384/rbfm.2018.v12.n2.p39-43.

Full text
Abstract:
Os valores dosimétricos obtidos para o tratamento terapêutico utilizando radionuclídeos são resultantes da utilização de modelagem matemática para geometrias de irradiação simples e em geometrias complexas utiliza-se códigos de simulação Monte Carlo. O problema é a validação de seus resultados, uma vez que os instrumentos utilizados permitem avaliações pontuais e não uma avaliação continua da distribuição de dose na região alvo. O presente trabalho visa investigar a possível utilização do gel polimérico MAGIC-f como instrumento de validação do código de simulação Monte Carlo PENELOPE aplicado no estudo dosimétrico de tratamento terapêuticos em medicina nuclear. Para comparar seus resultados foi utilizado um arranjo experimental contendo o gel polimérico MAGIC-f que foi irradiado com uma capsula de Iodo-131, a mesma geometria de irradiação experimental foi simulada utilizando o código de simulação Monte Carlo PENELOPE e seus resultados volumétricos foram comparados. Como mecanismo de comparação quantitativo entre os métodos foi utilizado os seus respectivos valores correspondentes ao coeficiente linear de atenuação, resultando um uma diferença de 8% entre os métodos. Os resultados quantitativos e qualitativos apresentados neste trabalho sugerem a viabilidade na utilização do gel polimérico MAGIC-f como instrumento de validação do código de simulação Monte Carlo PENELOPE no estudo dosimétrico em tratamentos terapêuticos realizados na medicina nuclear.
APA, Harvard, Vancouver, ISO, and other styles
7

Salvat, F., X. Llovet, and J. M. Fernáandez-Varea. "Penelope, A Monte Carlo Tool For Quantitative Electron Probe Microanalysis." Microscopy and Microanalysis 9, S02 (July 21, 2003): 534–35. http://dx.doi.org/10.1017/s1431927603442670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bielajew, A. F., and F. Salvat. "Improved electron transport mechanics in the PENELOPE Monte-Carlo model." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 173, no. 3 (January 2001): 332–43. http://dx.doi.org/10.1016/s0168-583x(00)00363-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alva, M., T. Pianoschi, T. Marques, M. Santanna M, O. Baffa, and P. Nicolucci. "Monte Carlo Simulation of MAGIC-fgel for Radiotherapy using PENELOPE." Journal of Physics: Conference Series 250 (November 1, 2010): 012067. http://dx.doi.org/10.1088/1742-6596/250/1/012067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hocine, Nora, Delphine Farlay, Georges Boivin, Didier Franck, and Michelle Agarande. "Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE." International Journal of Radiation Biology 90, no. 11 (August 19, 2014): 953–58. http://dx.doi.org/10.3109/09553002.2014.955144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Monte Carlo PENELOPE"

1

Pianoschi, Thatiane Alves. "Avaliação do código de simulação Monte Carlo PENELOPE para aplicações em geometrias delgadas e feixes de radiodiagnóstico." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-20052009-134402/.

Full text
Abstract:
O uso de códigos de simulação Monte Carlo em radiologia vem crescendo com o aparecimento de diferentes códigos de simulação, desenvolvidos especificamente para aplicações em radiologia, como, por exemplo, PENELOPE. Cada um desses códigos utiliza diferentes algoritmos para o transporte de partículas resultando em diferentes níveis de dificuldade de uso, acurácia nos resultados e desempenho nas simulações. O código de simulação Monte Carlo PENELOPE utiliza um algoritmo misto de transporte da radiação, definido por meio dos parâmetros de entrada da simulação. Normalmente utilizado para aplicações em feixes de altas energias, a influência desses parâmetros no transporte de partículas com o código PENELOPE ainda não foi completamente estabelecida para aplicações que utilizam feixes de radiodiagnóstico e geometrias delgadas. Especificamente em estudos de características dosimétricas de detectores de radiação que possuem espessuras delgadas, como câmaras de ionização, o tipo de algoritmo de transporte pode influenciar nos resultado das simulações. Neste trabalho, o estudo da influência dos parâmetros que controlam o algoritmo de transporte utilizado pelo código de simulação Monte Carlo PENELOPE em feixes de radiodiagnóstico e geometrias delgadas foi realizado através da simulação dos coeficientes de atenuação linear em diferentes materiais, espessuras e energias. A validação desse código nessa faixa de energia permitiu a determinação do fator de retroespalhamento para feixes polienergéticos, contribuindo para sua aplicação em radiodiagnóstico.
The use of Monte Carlo simulation in radiology has been growing with the appearance of different simulation codes that have been developed specifically for applications in radiology, as for example PENELOPE. Each of these codes use different algorithms for particle transport resulting in different levels of difficulty for its use as well as of accuracy and performance. The PENELOPE code uses a mixed algorithm for radiation transport that is defined by entrance parameters. Most of the applications of PENELOPE code have been performed with high energy beams, however the influence of the entrance parameters in the particle transport is not established for applications evolving radiodiagnostic beams and thin geometries. Specifically for the study of dosimetric characteristics of radiation detectors that have small thicknesses, as ionization chambers, the algorithm transport influences the results of the simulation. In this work, the study of the influence of entrance parameters on the transport algorithm used in PENELOPE Monte Carlo simulation code was performed by the simulation of the linear attenuation coefficients in different materials, thickness and energies used in radiodiagnostic. The validation of this code in such energy range allowed the determination of the backscatter factor for polienergetic beams, aiding its application in radiodianogsis.
APA, Harvard, Vancouver, ISO, and other styles
2

Pastor, Serrano Oscar. "Monte Carlo Simulations for Light Ion Transport based on the code PENELOPE." Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dickhoff, Leah. "Monte Carlo calculations of Linear Energy Transfer based on the PENELOPE code." Thesis, KTH, Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hult, Ludvig. "Interaction Models for Proton Transport Monte Carlo Simulations based on the PENELOPE code." Thesis, KTH, Fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blomqvist, David. "Monte Carlo Simulation of Proton and Neutron Transport Based on the PENELOPE Code." Thesis, KTH, Fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Santos, Mairon Marques dos. "Estudo de uma câmara de ionização tipo poço através de simulação Monte Carlo." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-19042010-175558/.

Full text
Abstract:
O uso de simulação Monte Carlo do transporte de radiação na matéria tem sido cada vez mais empregado nas áreas de física radiológica e dosimétrica. Em Medicina Nuclear é possível usar diversos códigos de simulação como ferramenta para estudar diferentes características de resposta de calibradores de dose. O código de simulação Monte Carlo PENELOPE (Penetration and ENErgy LOss of Positron and Electrons) possui um algoritmo misto do transporte de radiação, condensando eventos de interação, conforme os parâmetros de entrada estabelecidos. Neste trabalho, o código de simulação PENELOPE foi usado para estudar a resposta de uma câmara de ionização em função de diversos parâmetros que influenciam suas características de resposta. Neste trabalho os parâmetros de resposta de uma câmara de ionização tipo poço foram estudados através de simulação Monte Carlo, comparando-se os resultados obtidos com dados experimentais. A eficiência da câmara foi testada através de simulação e mostrou-se condizente com os valores previstos através de cálculos. Com relação à atividade, a resposta se mostrou linear para todos os nuclídeos estudados, sendo possível se obter a sensibilidade relativa da câmara através de simulação e de medidas experimentais. A resposta da câmara em função a energia, obtida através de simulação, também representou bem os valores experimentais, sendo possível extendê-los para energias mais altas e mais baixas que os valores das medidas experimentais. Estudos do volume de radiofármaco e da posição da fonte no poço da câmara obtidos através de simulação apresentaram comportamento esperado de acordo com a literatura. O código PENELOPE foi validado para o estudo desta câmara de ionização, permitindo que parâmetros geométricos e de materiais sejam estudados sem os custos e as dificudades dos arranjos experimentais.
The use of Monte Carlo simulation to the radiation transport in matter has been widly applied in the radiological and dosimetric areas. In Nuclear Medicine it is possible to use a variety of simulation codes as tools to study different response characteristics of dose calibrators used to measure radionuclides activities. The PENELOPE (Penetration and ENErgy LOss of Positron and Electrons) Monte Carlo simulation code has a mixed algorithm for the transport of radiation, which condenses the interaction events according to the input parameters. In this work, the PENELOPE code of simulation was used to study the response of an ionization chamber as function of parameters influencing its response. The chamber efficiency was tested by simulation and it showed a good agreement with calculated results. To the activity, its response showed a linear behavior for all studied nuclides, allowing one to obtain its sensitivity by simulation and measurements. The response of the chamber as a function of the energy obtained by simulation also showed a good agreement with the measurements, allowing one to extrapolate it to energies below and above the measured ones. The analysis with the volume of radiopharmaceuticals and position of the sourse in the chamber well obtained by simulation showed the expected behavior compared to the ones in literature. PENELOPE was validated to study this ionization chamber, so allow one to perform geometric and material parameters studies without experimental costs and difficulties.
APA, Harvard, Vancouver, ISO, and other styles
7

Sempau, Roma Josep. "Development and applications of a computer code for Monte Carlo simulation of electronphoton showers." Doctoral thesis, Universitat Politècnica de Catalunya, 1996. http://hdl.handle.net/10803/6620.

Full text
Abstract:
Se presenta el trabajo realizado sobre el paquete de Subrrutinas Penélope. Este código permite la simulación MC del transporte de fotones y electrones en la materia con geometrías complejas. Los aspectos considerados son:

A) mejora del algoritmo de SCATTERING de la radiación primaria y de los algoritmos que dan cuenta de las secundarias.

B) simplificación del algoritmo de SCATTERING mixto par electrones empleado anteriormente.

C) incorporación de secciones eficaces diferenciales.

D) un paquete de subrutinas geométricas, pengeom, ha sido desarrollado. Permite geometría combinatoria con superficies cuadricas.

e) presentación de un marco teórico para aplicar técnicas de reducción de varianza.

F) comparación con resultados experimentales y presentación de 4 aplicaciones reales que emplean pengeom y reducción de varianza. En su estado actual Penélope permite que usuarios externos no especializados puedan abordar problemas en el campo de la ingeniería de radiaciones, de la física médica, etc.
APA, Harvard, Vancouver, ISO, and other styles
8

Pianoschi, Thatiane Alves. "Estudo de dosimetria gel polimérica em radioterapia com feixes de elétrons utilizando ressonância magnética e simulação Monte Carlo." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-07102014-113550/.

Full text
Abstract:
Radioterapia com feixe de elétrons tem sido empregada, frequentemente, para tratamentos de neoplasias superficiais, devido às características de alcance bem definido e alto gradiente de dose em pouca profundidade. Para que as novas técnicas radioterápicas com esse tipo de feixe possam ser implementadas com segurança é necessária a realização de um controle da qualidade rigoroso. Protocolos recomendam que o controle da qualidade para esse tipo de feixe seja realizado com câmara de ionização, porém dosímetros termoluminescentes, diodos e filmes também são empregados com essa finalidade. Entretanto, esses dosímetros não possuem simultaneamente um conjunto de características essenciais para realização do controle da qualidade, como alta resolução espacial, baixa dependência energética, possibilidade de uso em altos gradientes de dose e distribuição tridimensional de dose. Nesse trabalho avaliou-se a utilização do dosímetro polimérico MAGIC-f gel em aplicações em controle da qualidade em Radioterapia com feixes de elétrons. As leituras das amostras de gel foram realizas por ressonância magnética e simulação Monte Carlo foi utilizada para comparação dos resultados. Como parte de um controle da qualidade para feixe de elétrons, foram determinados parâmetros dosimétricos, como perfil de dose e porcentagem de dose em profundidade, e fatores de qualidade do feixe, como R50, em condições de referência e para campos pequenos. Da comparação entre os dados clínicos e MAGIC-f as diferenças máximas encontradas foram de 4%. Além disso, distribuições de dose de aplicações clínicas com feixes de elétrons foram avaliadas pelo método de comparação do índice gama. Considerando os critérios de 3% e 3 mm, os resultados obtidos para o índice gama mostraram concordâncias acima de 94% para os métodos dosimétricos utilizados. Dessa forma, de acordo com as medidas dosimétricas realizadas com o dosímetro MAGIC-f gel conclui- se que a dosimetria polimérica gel pode ser empregada como uma ferramenta auxiliar em procedimentos de controle da qualidade em Radioterapia com feixes de elétrons, assim como uma ferramenta na determinação das distribuições tridimensionais de dose para feixe de elétrons.
Electron beam radiotherapy has been used frequently for treatments of superficial tumors, due its characteristics of well-defined range and high dose gradient at low depth. For new radiotherapy techniques with this type of beam, a strict quality control is necessary for a safe implementation. Protocols recommend that the quality control for electron beams must be performed with an ionization chamber. However, thermoluminescent dosimeters, films and diodes are also used for this purpose. Although, these dosimeters do not have a set of essential characteristics for performing quality control, like high spatial resolution, low energy dependence, possibility of use in high dose gradients and three dimensional dose distribution acquisition. The present work evaluated the use of MAGIC-f gel dosimeter for the quality control in radiotherapy with electron beams. The readings of the gel samples were made by magnetic resonance imaging and Monte Carlo simulation was used to compare the obtained results. As part of a quality control for the electron beam parameters as percentage depth dose and beam profile were determined. Also beam quality factors, such as R50, were calculated in reference conditions and for small fields. The obtained results were compared with clinical data and MAGIC-f the maximum obtained difference was 4%. In addition, dose distributions from clinical applications with electron beams were evaluated by the gamma index. Considering the criteria of 3% DD and 3 mm DTA, the results showed concordance greater than 94% for all dosimetric methods. Thus, according to the dosimetric measurements through MAGIC-f gel dosimeter it can be inferred that the gel dosimeter can be used as auxiliary tool in the quality control procedures in radiotherapy to electron beam. Also, MAGIC-f is a useful a tool to determine tridimensional dose distributions of electron beam.
APA, Harvard, Vancouver, ISO, and other styles
9

Baltazar, Camila Eduarda Polegato. "Simulação Monte Carlo e avaliação das distribuições de dose de radioterapia intraoperatória para tumores mamários." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-11052018-112041/.

Full text
Abstract:
Cirurgia conservadora de mama seguida de radioterapia é considerada como tratamento padrão para câncer de mama. A radioterapia intraoperatória (IORT) pode ser vantajosa, pois diminui o tempo de tratamento, geralmente de 4 a 6 semanas, para uma única fração, aplicada durante o procedimento cirúrgico. As distribuições de doses para tratamento por IORT não são bem conhecidas, pois o volume a ser irradiado é definido no momento da aplicação e não existe uma rotina de otimização do plano. Dessa forma as distribuições de dose não foram foco de estudos até o momento, de forma que torna-se interessante conhece-las. O objetivo do presente trabalho é simular e comparar as distribuições de doses para IORT com diferentes feixes e geometrias mamárias e compará-las com as distribuições obtidas para radioterapia 3D (3DR). Através do pacote de simulação Monte Carlo PENELOPE foram obtidas as distribuições de doses em técnicas radioterápicas 3DR e IORT por feixe de elétrons, gerados pelo acelerador NOVAC7, e por raios-X de baixa energia, gerado pelo acelerador Intrabeam. A validação dos feixes estudados, realizada através de comparação com dados da literatura, mostrou, para o feixe de 3DR, o perfil de dose esperado para os feixes com os filtros simulados. As maiores diferenças ocorreram nas regiões de horns, que aparecem subestimados na simulação. Para os feixes de IORT, as maiores diferenças entre simulação e literatura, de 7,79 e 8,6 pontos percentuais, respectivamente para NOVAC7 e Intrabeam, ocorrem em baixas profundidades. A simulação do tratamento para três diferentes volumes mamários gerou distribuições de doses que puderam ser usadas para comparação qualitativa entre as técnicas de tratamento. Para 3DR, as distribuições de doses mostram que parte considerável da dose é depositada no tórax. Embora as maiores doses sejam entregues dentro do volume da mama, ocorrem regiões frias dentro desse volume. As distribuições de dose obtidas para o Intrabeam mostraram que parte da dose pode ser entregue no tórax, dependendo do volume mamário e da posição do aplicador. O tratamento com NOVAC7 apresentou distribuições mais homogêneas dentro do volume alvo, em relação às outras técnicas. De forma geral, os resultados indicam que os tratamentos podem ser largamente influenciados pelo tamanho e posicionamento do campo para 3DR e posicionamento do aplicador para ambas as técnicas de IORT. O tratamento através do Intrabeam é comparável à 3DR. Segundo os parâmetros de avaliação do plano, IORT por feixe de elétrons proporcionaria o melhor tratamento, independentemente do volume mamário.
Conservative breast surgery followed by radiation therapy is considered the standart treatment for breast cancer. Intraoperative radiation therapy (IORT) has the advantage of decreasing the treatment duration, from the usual 4 to 6 weeks, to a single fraction, delivered during the surgical procedure. The dose distribution for treatment given through IORT are not well known, as the volume to be irradiated is defined at the moment of treatment deliver and there is not a plan optimization routine. Therefore the dose distributions were not, to the moment, the goal of any study, what makes interesting to know them. The goal of the present work is to simulate and compare the IORT dose distribution for different beams and breast geometries, and to compare to the 3D radiation therapy (3DR) dose distribution. The dose distributions for 3DR and for electron beam IORT, generated by the NOVAC7 dedicated accelerator, and for low energy x-ray IORT, generated by Intrabeam dedicated accelerator, were obtained using the Monte Carlo simulation package PENELOPE. The beams validation, performed through comparison with literature data, showed, for the 3DR beam, the dose profile expected for the simulated filters. The greatest differences occurred at the horns region, that appear sub estimated in the simulation. For IORT beams the greatest difference between simulation and literature, of 7.79 and 8.6 percentage points, respectively for the NOVAC7 and Intrabeam, occurred at low depths. The treatment simulation, with three different breast volumes, generated dose distributions that were used for a qualitative comparison of the techniques. 3DR dose distribution showed that a considerable fraction of the dose was delivered to the thorax. Although the highest doses were delivered inside the breast volume, cold regions occurred inside this volume also. Intrabeam dose distributions showed that part of the dose may be delivered to the thorax, given the breast volume and applicator position. The treatment through NOVAC7 presented more homogeneous dose distribution in relation to the other techniques. In general the results indicated that the treatment may be greatly affected by field size and position in 3DR and by the applicator position for both of the IORT techniques. Treatment through low energy x-ray IORT is comparable to 3DR treatment. According to the plan evaluation parameters electron beam IORT could give the best treatment for all the breast volumes evaluated.
APA, Harvard, Vancouver, ISO, and other styles
10

Silva, Ana Luiza Quevedo Ramos da. "Avaliação de parâmetros dosimétricos de fontes de braquiterapia utilizando simulação Monte Carlo e dosimetria gel polimérica." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-06102014-084506/.

Full text
Abstract:
A dosimetria em braquiterapia é importante para garantir a igualdade entre a dose entregue ao paciente e a dose planejada, porém a determinação experimental da dose é difícil devido ao alto gradiente de dose em regiões próximas à fonte. Nesse sentido, a dosimetria gel polimérica têm sido estudada como forma de se obter a distribuição tridimensional das doses dessas fontes. O protocolo da Associação Americana de Físicos em Medicina, intitulado TG-43, propõe um formalismo para o cálculo de dose de fontes de braquiterapia através de parâmetros da atividade, anisotropia e geometria da fonte, além de atenuação e espalhamento da radiação produzida pela fonte. Porém, a determinação das funções dosimétricas necessárias para o cálculo da dose não é feita diretamente através de experimentos. Nessa linha, o Método Monte Carlo vêm sendo utilizado no cálculo dessas funções dosimétricas em braquiterapia. Neste trabalho, foram determinados os parâmetros dosimétricos de duas fontes de braquiterapia, 60Co e 192Ir, utilizando simulação Monte Carlo com o código PENELOPE, assim como as distribuições de dose utilizando dosimetria gel polimérica com o MAGIC-f. Os dados obtidos computacionalmente foram comparados com a literatura, obtendo-se concordância melhor que 98% em todos os parâmetros para a fonte de 60Co. Para a fonte de 192Ir, encontraram-se diferenças de até 22%, embora quando os resultados deste trabalho foram comparados com o sistema de planejamento, o ajuste utilizado para o conjunto de pontos possui R2 de 0,9996. A comparação das distribuições de dose da fonte de 192Ir simuladas e determinadas com o gel polimérico MAGIC-f, apresentou concordância de 97% nos pontos englobados pela isodose de 50%, quando o critério de 3% e 3 mm foi utilizado. Esses resultados evidenciam o potencial do uso da dosimetria gel polimérica e da simulação Monte Carlo com o código PENELOPE em dosimetria de fontes de braquiterapia de alta taxa de dose.
Dosimetry in brachytherapy is important to assure the conformity between the planned and the delivered dose to the patient. However, the experimental determination of dose is difficult in this technique due the high dose gradient in regions near the source. Hence, polymer gel dosimetry has been studied as a tool to obtain three-dimensional distribution dose for these sources. A report of American Association of Medical Physics, entitled TG-43, proposes a formalism for dose calculation for brachytherapy sources through parameters such as activity, anisotropy and geometry of the source, and the attenuation and radiation scattering produced in the surrounding medium. However, the dosimetric functions needed for dose calculations are not directly determined through experiments. In this concern, the Monte Carlo method has been used in the calculation of these dosimetric funcions in brachytherapy. In the present work, the dosimetric parameters for two brachytherapy sources, 60Co e 192Ir, were determined using Monte Carlo simulation with PENELOPE code, and the dose distributions for the 192Ir source were determined using polymer gel dosimetry with MAGIC-f. Data obtained computationally were compared to literature, showing more than 98% agreement in all parameters for the 60Co source. For 192Ir, differences up to 22% were found to the literature, although when the results of this work were compared to the treatment planning system, a R2 equal to 0,9996 was found to the data fitting adjusting both data. The comparison of simulated dose distributions for 192Ir and those determined with MAGIC-f polymer gel showed that 97% of the points covered by 50% isodose are in agreement when gamma index criteria of 3% and 3 mm was used. These results indicate the potential use of polymer gel dosimetry with MAGIC-f and Monte Carlo simulation with PENELOPE code in dosimetry of high dose rate brachytherapy sources.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Monte Carlo PENELOPE"

1

PENELOPE 2014: A code system for Monte Carlo simulation of electron and photon transport. OECD, 2015. http://dx.doi.org/10.1787/4e3f14db-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PENELOPE 2018: A code system for Monte Carlo simulation of electron and photon transport. OECD, 2019. http://dx.doi.org/10.1787/32da5043-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PENELOPE 2011: A code system for Monte Carlo simulation of electron and photon transport. OECD, 2012. http://dx.doi.org/10.1787/ef77b746-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Monte Carlo PENELOPE"

1

Sempau, J., J. M. Fernández-Varea, F. Salvat, E. Benedito, M. Dingfelder, H. Oulad ben Tahar, X. Llovet, E. Acosta, A. Sánchez-Reyes, and J. Asenjo. "Status of PENELOPE." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 147–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, Pengxiang, Yaoqin Xie, and Shanglian Bao. "Monte Carlo simulation of x-ray tube spectra with PENELOPE." In IFMBE Proceedings, 503–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tse, Jason, Roger Fulton, and Donald McLean. "Dosimetric Modeling of Mammography Using the Monte Carlo Code PENELOPE and Its Validation." In Breast Imaging, 160–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41546-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panettieri, Vanessa, Craig Lancaster, Chuan-Dong Wen, and Trevor Ackerly. "Monte Carlo Simulation of Respiratory Motion Induced Penumbral Broadening in Dose Distribution Using PENELOPE." In IFMBE Proceedings, 1926–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casado, F. J., B. Mateo, E. Cenizo, S. García-Pareja, P. Galán, and C. Bodineau. "Monte Carlo dosimetry with PENELOPE code of the VariSource VS2000 192Ir high dose rate brachytherapy source." In IFMBE Proceedings, 148–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03474-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Monte Carlo PENELOPE"

1

Espana, S., J. L. Herraiz, E. Vicente, J. J. Vaquero, M. Desco, and J. M. Udias. "PeneloPET, a Monte Carlo PET simulation toolkit based on PENELOPE: Features and Validation." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.354439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salvat, Francesc. "The penelope code system. Specific features and recent improvements." In SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, edited by D. Caruge, C. Calvin, C. M. Diop, F. Malvagi, and J. C. Trama. Les Ulis, France: EDP Sciences, 2014. http://dx.doi.org/10.1051/snamc/201406017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sempau, Josep, Pedro Andreo, and Vito R. Vanin. "Accurate simulation of ionisation chamber response with the Monte Carlo code PENELOPE." In XXXIII BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3608951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pozuelo, F., S. Gallardo, A. Querol, G. Verdu, and J. Rodenas. "X-ray simulation with the Monte Carlo code PENELOPE. Application to Quality Control." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6347307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Badano, Aldo, Josep Sempau, and Jonathan S. Boswell. "Combined x-ray/electron/optical Monte Carlo code based on PENELOPE and DETECT-II." In Medical Imaging, edited by Michael J. Flynn. SPIE, 2005. http://dx.doi.org/10.1117/12.596726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Loehr, Anja, Jurgen Durst, Thilo Michel, Gisela Anton, and Peter Geithner. "Comparison of recent experimental data with Monte Carlo tools such as RoSi, Geant4 and Penelope." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moskvin, V., F. Salvat, D. K. Stewart, and C. M. DesRosiers. "PENELOPE Monte Carlo engine for treatment planning in radiation therapy with Very High Energy Electrons (VHEE) of 150–250 MeV." In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benhdech, Yassine, Stéphane Beaumont, Jean-Pierre Guédon, and Tarraf Torfeh. "New method to perform dosimetric quality control of treatment planning system using PENELOPE Monte Carlo and anatomical digital test objects." In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.844104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haojia Liu and Shujun Zhao. "Overview of PeneloPET: A PET-dedicated Monte Carlo simulation toolkit." In 2012 4th Electronic System-Integration Technology Conference (ESTC). IEEE, 2012. http://dx.doi.org/10.1109/estc.2012.6485786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography