Academic literature on the topic 'Monte Carlo simulation method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monte Carlo simulation method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monte Carlo simulation method"
Takahashi, Akihiko, and Nakahiro Yoshida. "Monte Carlo Simulation with Asymptotic Method." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 35, no. 2 (2005): 171–203. http://dx.doi.org/10.14490/jjss.35.171.
Full textAlexander, Francis J., and Alejandro L. Garcia. "The Direct Simulation Monte Carlo Method." Computers in Physics 11, no. 6 (1997): 588. http://dx.doi.org/10.1063/1.168619.
Full textRota, Gian-Carlo. "Simulation and the Monte-Carlo method." Advances in Mathematics 60, no. 1 (April 1986): 123. http://dx.doi.org/10.1016/0001-8708(86)90009-5.
Full textDate, Hiroyuki. "2. Monte Carlo Method and Simulation." Japanese Journal of Radiological Technology 70, no. 7 (2014): 705–14. http://dx.doi.org/10.6009/jjrt.2014_jsrt_70.7.705.
Full textGiles, Michael B. "Multilevel Monte Carlo methods." Acta Numerica 24 (April 27, 2015): 259–328. http://dx.doi.org/10.1017/s096249291500001x.
Full textMo, Wen Hui. "Monte Carlo Simulation of Reliability for Gear." Advanced Materials Research 268-270 (July 2011): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.42.
Full textCaflisch, Russel E. "Monte Carlo and quasi-Monte Carlo methods." Acta Numerica 7 (January 1998): 1–49. http://dx.doi.org/10.1017/s0962492900002804.
Full textRioux-Lavoie, Damien, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada, Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. "A Monte Carlo Method for Fluid Simulation." ACM Transactions on Graphics 41, no. 6 (November 30, 2022): 1–16. http://dx.doi.org/10.1145/3550454.3555450.
Full textGelman, Andrew. "Method of Moments Using Monte Carlo Simulation." Journal of Computational and Graphical Statistics 4, no. 1 (March 1995): 36. http://dx.doi.org/10.2307/1390626.
Full textGelman, Andrew. "Method of Moments Using Monte Carlo Simulation." Journal of Computational and Graphical Statistics 4, no. 1 (March 1995): 36–54. http://dx.doi.org/10.1080/10618600.1995.10474664.
Full textDissertations / Theses on the topic "Monte Carlo simulation method"
Janzon, Krister. "Monte Carlo Path Simulation and the Multilevel Monte Carlo Method." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151975.
Full textLee, Ming Ripman, and 李明. "Monte Carlo simulation for confined electrolytes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31240513.
Full textLee, Ming Ripman. "Monte Carlo simulation for confined electrolytes /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22055009.
Full textStephen, Alexander. "Enhancement of thermionic cooling using Monte Carlo simulation." Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=210113.
Full textArmour, Jessica D. "On the Gap-Tooth direct simulation Monte Carlo method." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72863.
Full text"February 2012." Cataloged from PDF version of thesis.
Includes bibliographical references (p. [73]-74).
This thesis develops and evaluates Gap-tooth DSMC (GT-DSMC), a direct Monte Carlo simulation procedure for dilute gases combined with the Gap-tooth method of Gear, Li, and Kevrekidis. The latter was proposed as a means of reducing the computational cost of microscopic (e.g. molecular) simulation methods using simulation particles only in small regions of space (teeth) surrounded by (ideally) large gaps. This scheme requires an algorithm for transporting particles between teeth. Such an algorithm can be readily developed and implemented within direct Monte Carlo simulations of dilute gases due to the non-interacting nature of the particle-simulators. The present work develops and evaluates particle treatment at the boundaries associated with diffuse-wall boundary conditions and investigates the drawbacks associated with GT-DSMC implementations which detract from the theoretically large computational benefit associated with this algorithm (the cost reduction is linear in the gap-to-tooth ratio). Particular attention is paid to the additional numerical error introduced by the gap-tooth algorithm as well as the additional statistical uncertainty introduced by the smaller number of particles. We find the numerical error introduced by transporting particles to adjacent teeth to be considerable. Moreover, we find that due to the reduced number of particles in the simulation domain, correlations persist longer, and thus statistical uncertainties are larger than DSMC for the same number of particles per cell. This considerably reduces the computational benefit associated with the GT-DSMC algorithm. We conclude that the GT-DSMC method requires more development, particularly in the area of error and uncertainty reduction, before it can be used as an effective simulation method.
by Jessica D. Armour.
S.M.
Obradovic, Borna Josip. "Multi-dimensional Monte Carlo simulation of ion implantation into complex structures /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textBlanckenberg, J. P. (Jacobus Petrus). "Monte Carlo simulation of direction sensitive antineutrino detection." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/2885.
Full textENGLISH ABSTRACT: Neutrino and antineutrino detection is a fairly new eld of experimental physics, mostly due to the small interaction cross section of these particles. Most of the detectors in use today are huge detectors consisting of kilotons of scintilator material and large arrays of photomultiplier tubes. Direction sensitive antineutrino detection has however, not been done (at the time of writing of this thesis). In order to establish the feasibility of direction sensitive antineutrino detection, a Monte Carlo code, DSANDS, was written to simulate the detection process. This code focuses on the neutron and positron (the reaction products after capture on a proton) transport through scintilator media. The results are then used to determine the original direction of the antineutrino, in the same way that data from real detectors would be used, and to compare it with the known direction. Further investigation is also carried out into the required amount of statistics for accurate results in an experimental eld where detection events are rare. Results show very good directional sensitivity of the detection method.
AFRIKAANSE OPSOMMING: Neutrino en antineutrino meting is 'n relatief nuwe veld in eksperimentele sika, hoofsaaklik as gevolg van die klein interaksie deursnee van hierdie deeltjies. Die meeste hedendaagse detektors is massiewe detektors met kilotonne sintilator materiaal en groot aantalle fotovermenigvuldiger buise. Tans is rigting sensitiewe antineutrino metings egter nog nie uit gevoer nie. 'n Monte Carlo kode, DSANDS, is geskryf om die meet proses te simuleer en sodoende die uitvoerbaarheid van rigting sensitiewe antineutrino metings vas te stel. Hierdie kode fokus op die beweging van neutrone en positrone (die reaksie produkte) deur die sintilator medium. Die resultate word dan gebruik om die oorspronklike rigting van die antineutrino te bepaal, soos met data van regte detektors gedoen sou word, en te vergelyk met die bekende oorspronklike rigting van die antineutrino. Verder word daar ook gekyk na die hoeveelheid statistiek wat nodig sal wees om akkurate resultate te kry in 'n veld waar metings baie skaars is. Die resultate wys baie goeie rigting sensitiwiteit van die meet metode.
Mansour, Nabil S. "Inclusion of electron-plasmon interactions in ensemble Monte Carlo simulations of degerate GaAs." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/13862.
Full textRumbe, George Otieno. "Performance evaluation of second price auction using Monte Carlo simulation." Diss., Online access via UMI:, 2007.
Find full textJunnarkar, Parikshit Manoj. "Monte-Carlo simulation of photoproduction of Omega meson." Master's thesis, Mississippi State : Mississippi State University, 2006. http://library.msstate.edu/etd/show.asp?etd=etd-07312006-013358.
Full textBooks on the topic "Monte Carlo simulation method"
P, Kroese Dirk, ed. Simulation and the monte carlo method. 2nd ed. Hoboken, N.J: John Wiley & Sons, 2008.
Find full textKroese, Dirk P., Thomas Taimre, Zdravko I. Botev, and Rueven Y. Rubinstein. Simulation and the Monte Carlo Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470285312.
Full textRubinstein, Reuven Y., and Dirk P. Kroese. Simulation and the Monte Carlo Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118631980.
Full textMoglestue, C. Monte Carlo simulation of semiconductor devices. London: Chapman & Hall, 1993.
Find full textPierre, L' Ecuyer, and Owen Art B, eds. Monte Carlo and quasi-Monte Carlo methods 2008. Heidelberg: Springer, 2009.
Find full textMonte Carlo optimization, simulation, and sensitivity of queueing networks. New York: Wiley, 1986.
Find full textFranklin, Mendivil, ed. Explorations in Monte Carlo methods. Dordrecht: Springer, 2009.
Find full textMoglestue, C. Monte Carlo Simulation of Semiconductor Devices. Dordrecht: Springer Netherlands, 1993.
Find full textBook chapters on the topic "Monte Carlo simulation method"
Jungemann, Christoph, and Bernd Meinerzhagen. "The Monte-Carlo Method." In Hierarchical Device Simulation, 34–56. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6086-2_3.
Full textCevallos-Torres, Lorenzo, and Miguel Botto-Tobar. "Monte Carlo Simulation Method." In Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation, 87–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13393-1_5.
Full textTildesley, D. J. "The Monte Carlo Method." In Computer Simulation in Chemical Physics, 1–22. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1679-4_1.
Full textKinser, Jason M. "The Monte Carlo Method." In Modeling and Simulation in Python, 27–54. New York: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003226581-4.
Full textRollett, Anthony D., and Priya Manohar. "The Monte Carlo Method." In Continuum Scale Simulation of Engineering Materials, 77–114. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch4.
Full textMoglestue, C. "The Monte Carlo Method." In Monte Carlo Simulation of Semiconductor Devices, 115–29. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8133-2_5.
Full textZio, Enrico. "Monte Carlo Simulation: The Method." In Springer Series in Reliability Engineering, 19–58. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4588-2_3.
Full textHu, Xiao, Yoshihiko Nonomura, and Masanori Kohno. "Monte Carlo Simulation." In Springer Handbook of Materials Measurement Methods, 1057–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-30300-8_22.
Full textChang, Mark. "Monte Carlo Simulation." In Modern Issues and Methods in Biostatistics, 233–59. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9842-2_9.
Full textMcNeish, Daniel, Stephanie Lane, and Patrick Curran. "Monte Carlo Simulation Methods." In The Reviewer’s Guide to Quantitative Methods in the Social Sciences, 269–76. Second Edition. | New York : Routledge, 2019. | Revised edition of The reviewer’s guide to quantitative methods in the social sciences, 2010.: Routledge, 2018. http://dx.doi.org/10.4324/9781315755649-20.
Full textConference papers on the topic "Monte Carlo simulation method"
Basden, Alastair, Richard Myers, and Timothy Butterley. "Monte-Carlo simulation of EAGLE." In Adaptive Optics: Methods, Analysis and Applications. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/aopt.2009.aotud4.
Full textHarrison, Robert L., Carlos Granja, and Claude Leroy. "Introduction to Monte Carlo Simulation." In NUCLEAR PHYSICS METHODS AND ACCELERATORS IN BIOLOGY AND MEDICINE: Fifth International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine. AIP, 2010. http://dx.doi.org/10.1063/1.3295638.
Full textTan, Hui. "Adaptive Monte Carlo sampling gradient method for optimization." In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8248222.
Full textVedula, Prakash, and Dustin Otten. "Importance Sampling Based Direct Simulation Monte Carlo Method." In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-5061.
Full textSaragih, Nidia Enjelita, Ermayanti Astuti, Austin Alexander Parhusip, and Tika Nirmalasari. "Determining Production Number Using Monte Carlo Simulation Method." In 2018 6th International Conference on Cyber and IT Service Management (CITSM). IEEE, 2018. http://dx.doi.org/10.1109/citsm.2018.8674304.
Full textDai, Jian-Yang, Zai-Fa Zhou, Qing-An Huang, and Wei-Hua Li. "LPCVD process simulation based on Monte Carlo method." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667771.
Full textKelsall, R. W. "The Monte Carlo method for semiconductor device simulation." In IEE Colloquium on Physical Modelling of Semiconductor Devices. IEE, 1995. http://dx.doi.org/10.1049/ic:19950428.
Full textKalos, Malvin H. "Monte Carlo methods in the physical sciences." In 2007 Winter Simulation Conference. IEEE, 2007. http://dx.doi.org/10.1109/wsc.2007.4419611.
Full textSchrock, Christopher, and Aihua Wood. "Distributional Direct Simulation Monte Carlo Methods." In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4501.
Full textGoswami, Somdatta, and Subrata Chakraborty. "Adaptive Response Surface Method Based Efficient Monte Carlo Simulation." In Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413609.205.
Full textReports on the topic "Monte Carlo simulation method"
Boyd, Iain D. A Threshold Line Dissociation Model for the Direct Simulation Monte Carlo Method,. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada324950.
Full textGarcia, A. L., F. Baras, and M. M. Mansour. Comment on ``Simulation of a two-dimensional Rayleigh-Benard system using the direct simulation Monte Carlo method``. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/371414.
Full textGlaser, R., G. Johannesson, S. Sengupta, B. Kosovic, S. Carle, G. Franz, R. Aines, et al. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/15009813.
Full textJ. Case and D. Buesch. Simulation of Ventilation Efficiency, Temperatures, and Relative Humidities in Emplacement Drifts at Yucca Mountain, Nevada, Using Monte Carlo and Composite Thermal-Pulse Methods. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/837500.
Full textHill, James Lloyd. Introduction to the Monte Carlo Method. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1634920.
Full textGlaser, R. Monte Carlo simulation of scenario probability distributions. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/632934.
Full textBlomquist, R. N., and E. M. Gelbard. Alternative implementations of the Monte Carlo power method. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/793906.
Full textXu, S. L., B. Lai, and P. J. Viccaro. APS undulator and wiggler sources: Monte-Carlo simulation. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/10134610.
Full textDouglas, L. J. Monte Carlo Simulation as a Research Management Tool. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/1129252.
Full textAguayo Navarrete, Estanislao, Austin S. Ankney, Timothy J. Berguson, Richard T. Kouzes, John L. Orrell, Meredith D. Troy, and Clinton G. Wiseman. Monte Carlo Simulation Tool Installation and Operation Guide. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1095434.
Full text