Journal articles on the topic 'Mori formalism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mori formalism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ayik, S. "Nuclear response function in the Mori formalism." Physical Review Letters 56, no. 1 (January 6, 1986): 38–41. http://dx.doi.org/10.1103/physrevlett.56.38.
Full textHijón, Carmen, Pep Español, Eric Vanden-Eijnden, and Rafael Delgado-Buscalioni. "Mori–Zwanzig formalism as a practical computational tool." Faraday Discuss. 144 (2010): 301–22. http://dx.doi.org/10.1039/b902479b.
Full textJoslin, C. G., and C. G. Gray. "Calculation of transport coefficients using a modified Mori formalism." Molecular Physics 58, no. 4 (July 1986): 789–97. http://dx.doi.org/10.1080/00268978600101571.
Full textPires, A. S. T., and M. E. Gouvêa. "Comparing the Mori formalism and the green function methods." Brazilian Journal of Physics 34, no. 3b (September 2004): 1189–92. http://dx.doi.org/10.1590/s0103-97332004000600009.
Full textJoslin, C. G., and C. G. Gray. "Calculation of transport coefficients using a modified Mori formalism." Molecular Physics 66, no. 4 (March 1989): 757–65. http://dx.doi.org/10.1080/00268978900100501.
Full textGivon, Dror, Raz Kupferman, and Ole H. Hald. "Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism." Israel Journal of Mathematics 145, no. 1 (December 2005): 221–41. http://dx.doi.org/10.1007/bf02786691.
Full textWang, Shu, Zhen Li, and Wenxiao Pan. "Correction: Implicit-solvent coarse-grained modeling for polymer solutions via Mori–Zwanzig formalism." Soft Matter 15, no. 38 (2019): 7733. http://dx.doi.org/10.1039/c9sm90180a.
Full textFalkena, Swinda K. J., Courtney Quinn, Jan Sieber, Jason Frank, and Henk A. Dijkstra. "Derivation of delay equation climate models using the Mori-Zwanzig formalism." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2227 (July 2019): 20190075. http://dx.doi.org/10.1098/rspa.2019.0075.
Full textHudson, Thomas, and Xingjie H. Li. "Coarse-Graining of Overdamped Langevin Dynamics via the Mori--Zwanzig Formalism." Multiscale Modeling & Simulation 18, no. 2 (January 2020): 1113–35. http://dx.doi.org/10.1137/18m1222533.
Full textWang, Shu, Zhen Li, and Wenxiao Pan. "Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism." Soft Matter 15, no. 38 (2019): 7567–82. http://dx.doi.org/10.1039/c9sm01211g.
Full textMontoya-Castillo, Andrés, and David R. Reichman. "Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics." Journal of Chemical Physics 144, no. 18 (May 14, 2016): 184104. http://dx.doi.org/10.1063/1.4948408.
Full textLin, Kevin K., and Fei Lu. "Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism." Journal of Computational Physics 424 (January 2021): 109864. http://dx.doi.org/10.1016/j.jcp.2020.109864.
Full textLi, Zhen, Xin Bian, Xiantao Li, and George Em Karniadakis. "Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism." Journal of Chemical Physics 143, no. 24 (December 28, 2015): 243128. http://dx.doi.org/10.1063/1.4935490.
Full textKatouzian, Mostafa, and Sorin Vlase. "Mori–Tanaka Formalism-Based Method Used to Estimate the Viscoelastic Parameters of Laminated Composites." Polymers 12, no. 11 (October 26, 2020): 2481. http://dx.doi.org/10.3390/polym12112481.
Full textMontoya-Castillo, Andrés, and David R. Reichman. "Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions." Journal of Chemical Physics 146, no. 8 (February 28, 2017): 084110. http://dx.doi.org/10.1063/1.4975388.
Full textBhalla, Pankaj, and Navinder Singh. "A comparative study of finite frequency scattering rate from Allen, Mitrović–Fiorucci, Shulga–Dolgov–Maksimov, Sharapov–Carbotte and memory function formalisms." International Journal of Modern Physics B 33, no. 13 (May 20, 2019): 1950128. http://dx.doi.org/10.1142/s0217979219501285.
Full textMih�kov�, E., and K. Pol�k. "Emission Decay Kinetics of Pb2+ Ions in Potassium Halide Crystals. Application of Tokuyama-Mori Formalism." physica status solidi (b) 206, no. 2 (April 1998): 823–40. http://dx.doi.org/10.1002/(sici)1521-3951(199804)206:2<823::aid-pssb823>3.0.co;2-n.
Full textParish, Eric J., and Karthik Duraisamy. "A dynamic subgrid scale model for Large Eddy Simulations based on the Mori–Zwanzig formalism." Journal of Computational Physics 349 (November 2017): 154–75. http://dx.doi.org/10.1016/j.jcp.2017.07.053.
Full textFalkena, Swinda K. J., Courtney Quinn, Jan Sieber, and Henk A. Dijkstra. "A delay equation model for the Atlantic Multidecadal Oscillation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2246 (February 2021): 20200659. http://dx.doi.org/10.1098/rspa.2020.0659.
Full textYoshimoto, Yuta, Zhen Li, Ikuya Kinefuchi, and George Em Karniadakis. "Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion." Journal of Chemical Physics 147, no. 24 (December 28, 2017): 244110. http://dx.doi.org/10.1063/1.5009041.
Full textChu, Weiqi, and Xiantao Li. "The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics." Communications in Mathematical Sciences 17, no. 2 (2019): 539–63. http://dx.doi.org/10.4310/cms.2019.v17.n2.a10.
Full textKhamzin, A. A., R. R. Nigmatullin, and I. I. Popov. "Description of the anomalous dielectric relaxation in disordered systems in the frame of the Mori-Zwanzig formalism." Journal of Physics: Conference Series 394 (November 29, 2012): 012013. http://dx.doi.org/10.1088/1742-6596/394/1/012013.
Full textWang, Qian, Nicolò Ripamonti, and Jan S. Hesthaven. "Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism." Journal of Computational Physics 410 (June 2020): 109402. http://dx.doi.org/10.1016/j.jcp.2020.109402.
Full textGouasmi, Ayoub, Eric J. Parish, and Karthik Duraisamy. "A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2205 (September 2017): 20170385. http://dx.doi.org/10.1098/rspa.2017.0385.
Full textAjdour, M., A. Bakkali, L. Azrar, and A. El Omri. "Modeling and analysis of loaded multilayered magnetoelectroelastic structures composite materials: Applications." Advanced Electromagnetics 5, no. 3 (December 19, 2016): 91. http://dx.doi.org/10.7716/aem.v5i3.426.
Full textLi, Zhen, Hee Sun Lee, Eric Darve, and George Em Karniadakis. "Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts." Journal of Chemical Physics 146, no. 1 (January 7, 2017): 014104. http://dx.doi.org/10.1063/1.4973347.
Full textChung, Shin-Ho, and Michael Roper. "Generalized Langevin Equation: An Introductory Review for Biophysicists." Biophysical Reviews and Letters 14, no. 04 (December 2019): 171–96. http://dx.doi.org/10.1142/s1793048019300019.
Full textMa, Kou-Han, and Ning-Hua Tong. "Improved strong-coupling perturbation theory of the symmetric Anderson impurity model." Modern Physics Letters B 33, no. 27 (September 30, 2019): 1950332. http://dx.doi.org/10.1142/s0217984919503329.
Full textChorin, Alexandre J., and Fei Lu. "Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics." Proceedings of the National Academy of Sciences 112, no. 32 (July 27, 2015): 9804–9. http://dx.doi.org/10.1073/pnas.1512080112.
Full textYoshimoto, Yuta, Zhen Li, Ikuya Kinefuchi, and George Em Karniadakis. "Publisher’s Note: “Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion” [J. Chem. Phys. 147, 244110 (2017)]." Journal of Chemical Physics 148, no. 4 (January 28, 2018): 049901. http://dx.doi.org/10.1063/1.5023012.
Full textLeporati, Matthew. "New Formalism in the Classroom: Re-Forming Epic Poetry in Wordsworth and Blake." Humanities 8, no. 2 (May 20, 2019): 100. http://dx.doi.org/10.3390/h8020100.
Full textVenturi, D., and G. E. Karniadakis. "Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2166 (June 8, 2014): 20130754. http://dx.doi.org/10.1098/rspa.2013.0754.
Full textVANNUCCHI, FABIO S., AUREA R. VASCONCELLOS, and ROBERTO LUZZI. "THERMO-STATISTICAL THEORY OF KINETIC AND RELAXATION PROCESSES." International Journal of Modern Physics B 23, no. 27 (October 30, 2009): 5283–305. http://dx.doi.org/10.1142/s0217979209054284.
Full textBengtsson, Lisa, Jian-Wen Bao, Philip Pegion, Cecile Penland, Sara Michelson, and Jeffrey Whitaker. "A Model Framework for Stochastic Representation of Uncertainties Associated with Physical Processes in NOAA’s Next Generation Global Prediction System (NGGPS)." Monthly Weather Review 147, no. 3 (February 28, 2019): 893–911. http://dx.doi.org/10.1175/mwr-d-18-0238.1.
Full textManavella, E. C. "EXTENDED FADDEEV-JACKIW CANONICAL QUANTIZATION FOR THE (1+1)-DIMENSIONAL NONRELATIVISTIC ELECTRODYNAMICS." Anales AFA 31, no. 4 (January 15, 2021): 127–34. http://dx.doi.org/10.31527/analesafa.2020.31.4.127.
Full textDowling, Christopher. "Zangwill, Moderate Formalism, and Another Look at Kant's Aesthetic." Kantian Review 15, no. 2 (July 2010): 90–117. http://dx.doi.org/10.1017/s1369415400002454.
Full textLapidus, R. "THE AIMS AND ACHIEVEMENTS OF THE RUSSIAN FORMALISTS IN THE YEARS 1913-1925." East European Scientific Journal 3, no. 7(71) (August 11, 2021): 4–11. http://dx.doi.org/10.31618/essa.2782-1994.2021.3.71.94.
Full textHUQ, M., P. I. OBIAKOR, and S. SINGH. "POINT PARTICLE WITH EXTRINSIC CURVATURE." International Journal of Modern Physics A 05, no. 22 (November 20, 1990): 4301–10. http://dx.doi.org/10.1142/s0217751x90001793.
Full textKlages, Gerhard. "Molekülinterne Dipolorientierung und dielektrische Absorption in verdünnter Lösung bei Mikro-und Submillimeterwellen. V.Acetyl-Verbindungen." Zeitschrift für Naturforschung A 44, no. 9 (September 1, 1989): 853–65. http://dx.doi.org/10.1515/zna-1989-0914.
Full textGretchko, Valerij. "Aesthetic conception of Russian Formalism: the cognitive view." Sign Systems Studies 31, no. 2 (December 31, 2003): 523–32. http://dx.doi.org/10.12697/sss.2003.31.2.12.
Full textCyras, Kristijonas. "Rational versus Intuitive Outcomes of Reasoning with Preferences: Argumentation Perspective." Inteligencia Artificial 20, no. 59 (February 6, 2017): 70. http://dx.doi.org/10.4114/intartif.vol20iss59pp40-81.
Full textCosta, e. "Interaction parameters of oxygen and deoxidants in liquid iron." Journal of Mining and Metallurgy, Section B: Metallurgy 52, no. 1 (2016): 41–46. http://dx.doi.org/10.2298/jmmb150901001c.
Full textNebel, B. "On the Compilability and Expressive Power of Propositional Planning Formalisms." Journal of Artificial Intelligence Research 12 (May 1, 2000): 271–315. http://dx.doi.org/10.1613/jair.735.
Full textJou, David. "Relationships between rational extended thermodynamics and extended irreversible thermodynamics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2170 (March 30, 2020): 20190172. http://dx.doi.org/10.1098/rsta.2019.0172.
Full textNederhof, M. J., and G. Satta. "IDL-Expressions: A Formalism for Representing and Parsing Finite Languages in Natural Language Processing." Journal of Artificial Intelligence Research 21 (March 1, 2004): 287–317. http://dx.doi.org/10.1613/jair.1309.
Full textGUPTA, RAJ K., S. K. PATRA, P. D. STEVENSON, and WALTER GREINER. "A HIGHLY NEUTRON-RICH CLUSTER AND/OR A SUPERHEAVY NUCLEUS IN THE COMPOUND NUCLEUS 238U+238U: A MEAN FIELD STUDY." International Journal of Modern Physics E 16, no. 06 (July 2007): 1721–32. http://dx.doi.org/10.1142/s0218301307006137.
Full textNEILSON, DAVID. "DISSIPATIVE PROCESSES IN LOW DENSITY STRONGLY INTERACTING 2D ELECTRON SYSTEMS." International Journal of Modern Physics B 24, no. 25n26 (October 20, 2010): 4946–60. http://dx.doi.org/10.1142/s0217979210057122.
Full textYacoub, Aznam, Maamar El Amine Hamri, and Claudia Frydman. "DEv-PROMELA: modeling, verification, and validation of a video game by combining model-checking and simulation." SIMULATION 96, no. 11 (August 17, 2020): 881–910. http://dx.doi.org/10.1177/0037549720946107.
Full textDREWES, FRANK. "LINKS." International Journal of Foundations of Computer Science 18, no. 06 (December 2007): 1187–96. http://dx.doi.org/10.1142/s0129054107005236.
Full textBISHOP, GARNER C., and JUDY SMITH. "A MODEL FOR SCATTERING FROM AN ACOUSTICALLY HARD SURFACE WITH NONDIFFERENTIABLE PERIODIC ROUGHNESS." Journal of Computational Acoustics 01, no. 02 (June 1993): 249–85. http://dx.doi.org/10.1142/s0218396x93000147.
Full text