Academic literature on the topic 'Morse-Bott theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Morse-Bott theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Morse-Bott theory"
Hutchings, Michael, and Jo Nelson. "Axiomatic S1 Morse–Bott theory." Algebraic & Geometric Topology 20, no. 4 (2020): 1641–90. http://dx.doi.org/10.2140/agt.2020.20.1641.
Full textCASASAYAS, J., J. MARTINEZ ALFARO, and A. NUNES. "KNOTS AND LINKS IN INTEGRABLE HAMILTONIAN SYSTEMS." Journal of Knot Theory and Its Ramifications 07, no. 02 (1998): 123–53. http://dx.doi.org/10.1142/s0218216598000097.
Full textHURTUBISE, DAVID E. "MULTICOMPLEXES AND SPECTRAL SEQUENCES." Journal of Algebra and Its Applications 09, no. 04 (2010): 519–30. http://dx.doi.org/10.1142/s0219498810004087.
Full textLima, D. V. S., O. Manzoli Neto, and K. A. de Rezende. "On handle theory for Morse–Bott critical manifolds." Geometriae Dedicata 202, no. 1 (2018): 265–309. http://dx.doi.org/10.1007/s10711-018-0413-7.
Full textScáardua, Bruno, and José Seade. "Codimension one foliations with Bott-Morse singularities I." Journal of Differential Geometry 83, no. 1 (2009): 189–212. http://dx.doi.org/10.4310/jdg/1253804355.
Full textOH, YONG-GEUN, and RUI WANG. "ANALYSIS OF CONTACT CAUCHY–RIEMANN MAPS II: CANONICAL NEIGHBORHOODS AND EXPONENTIAL CONVERGENCE FOR THE MORSE–BOTT CASE." Nagoya Mathematical Journal 231 (May 15, 2017): 128–223. http://dx.doi.org/10.1017/nmj.2017.17.
Full textAlbers, Peter, and Doris Hein. "Cuplength estimates in Morse cohomology." Journal of Topology and Analysis 08, no. 02 (2016): 243–72. http://dx.doi.org/10.1142/s1793525316500102.
Full textSavelyev, Yasha. "Yang–Mills theory and jumping curves." International Journal of Mathematics 26, no. 05 (2015): 1550029. http://dx.doi.org/10.1142/s0129167x15500299.
Full textRochon, Frédéric. "Rigidity of Hamiltonian Actions." Canadian Mathematical Bulletin 46, no. 2 (2003): 277–90. http://dx.doi.org/10.4153/cmb-2003-028-7.
Full textFeehan, Paul M. N., and Manousos Maridakis. "Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functions on Banach spaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 765 (2020): 35–67. http://dx.doi.org/10.1515/crelle-2019-0029.
Full textDissertations / Theses on the topic "Morse-Bott theory"
Bonatto, Luciana Basualdo. "Bott\'s periodicity theorem from the algebraic topology viewpoint." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/.
Full textMennesson, Pierre. "Homologie symplectique Tⁿ-équivariante pour les variétés toriques hamiltoniennes". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS315/document.
Full textHeistercamp, Muriel. "The Weinstein conjecture with multiplicities on spherizations." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209882.
Full textYaptieu, Djeungue Odette Sylvia. "Generalizations of discrete Morse theory." 2017. https://ul.qucosa.de/id/qucosa%3A17104.
Full textBooks on the topic "Morse-Bott theory"
Book chapters on the topic "Morse-Bott theory"
Austin, D. M., and P. J. Braam. "Morse-Bott theory and equivariant cohomology." In The Floer Memorial Volume. Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9217-9_8.
Full textBott, Raoul. "Morse Theory Indomitable." In Raoul Bott Collected Papers. Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-2564-5_19.
Full textBott, Raoul. "Morse Theoretic Aspects of Yang-Mills Theory." In Raoul Bott Collected Papers. Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2564-5_5.
Full textBott, Raoul. "An Equivariant Setting of the Morse Theory." In Raoul Bott Collected Papers. Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2564-5_6.
Full textBott, Raoul. "Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces." In Raoul Bott Collected Papers. Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2564-5_4.
Full text"The Bott-Morse theory." In Translations of Mathematical Monographs. American Mathematical Society, 2000. http://dx.doi.org/10.1090/mmono/091/09.
Full text