Academic literature on the topic 'MoTe2-MoS2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MoTe2-MoS2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MoTe2-MoS2"

1

Zhu, Xuesong, Dahao Wu, Shengzhi Liang, and Jing Liu. "Strain insensitive flexible photodetector based on molybdenum ditelluride/molybdenum disulfide heterostructure." Nanotechnology 34, no. 15 (2023): 155502. http://dx.doi.org/10.1088/1361-6528/acb359.

Full text
Abstract:
Abstract Flexible electronic and optoelectronic devices are highly desirable for various emerging applications, such as human-computer interfaces, wearable medical electronics, flexible display, etc. Layered two-dimensional (2D) material is one of the most promising types of materials to develop flexible devices due to its atomically thin thickness, which gives it excellent flexibility and mechanical endurance. However, the 2D material devices fabricated on flexible substrate inevitably suffer from mechanical deformation, which can severely affect device performances, resulting in function deg
APA, Harvard, Vancouver, ISO, and other styles
2

Grajcarova, Liliana, Michaela Riflikova, Roman Martonak, and Erio Tosatti. "Structural and electronic behaviour of MoS2, MoSe2and MoTe2at high pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1619. http://dx.doi.org/10.1107/s2053273314083806.

Full text
Abstract:
Using ab initio calculations and metadynamics simulations we studied the behaviour of layered semiconducting transition metal dichalcogenides, MoX2 (X = S, Se, Te) at high pressure with focus on structural transitions and metallization [1,2]. We found that concerning structure, the behaviour of MoS2 is different from that of MoSe2 and MoTe2. In MoS2 pressure induces at 20 GPa a structural transition where layer sliding takes place, bringing the initial 2Hc stacking to a 2Ha stacking typical of e.g. 2H-NbSe2. This finding naturally explains previous X-ray diffraction and Raman spectroscopy data
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Do-Hyun, and Hyo Chan Lee. "Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures." Micromachines 14, no. 1 (2023): 140. http://dx.doi.org/10.3390/mi14010140.

Full text
Abstract:
The development of short-wave infrared photodetectors based on various two-dimensional (2D) materials has recently attracted attention because of the ability of these devices to operate at room temperature. Although van der Waals heterostructures of 2D materials with type-II band alignment have significant potential for use in short-wave infrared photodetectors, there is a need to develop photodetectors with high photoresponsivity. In this study, we investigated the photogating of graphene using a monolayer-MoS2/monolayer-MoTe2 van der Waals heterostructure. By stacking MoS2/MoTe2 on graphene,
APA, Harvard, Vancouver, ISO, and other styles
4

Hibino, Y., S. Ishihara, N. Sawamoto, et al. "Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition." MRS Advances 2, no. 29 (2017): 1557–62. http://dx.doi.org/10.1557/adv.2017.125.

Full text
Abstract:
ABSTRACTWe report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was e
APA, Harvard, Vancouver, ISO, and other styles
5

Chikukwa, Evernice, Edson Meyer, Johannes Mbese, and Nyengerai Zingwe. "Colloidal Synthesis and Characterization of Molybdenum Chalcogenide Quantum Dots Using a Two-Source Precursor Pathway for Photovoltaic Applications." Molecules 26, no. 14 (2021): 4191. http://dx.doi.org/10.3390/molecules26144191.

Full text
Abstract:
The drawbacks of utilizing nonrenewable energy have quickened innovative work on practical sustainable power sources (photovoltaics) because of their provision of a better-preserved decent environment which is free from natural contamination and commotion. Herein, the synthesis, characterization, and application of Mo chalcogenide nanoparticles (NP) as alternative sources in the absorber layer of QDSSCs is discussed. The successful synthesis of the NP was confirmed as the results from the diffractive peaks obtained from XRD which were positive and agreed in comparison with the standard. The di
APA, Harvard, Vancouver, ISO, and other styles
6

Zazpe, Raul, Hanna Sopha, Jhonatan Rodriguez Pereira, and Jan M. Macak. "Electrocatalytic Applications of 2D Molybdenum Dichalcogenides By Atomic Layer Deposition." ECS Meeting Abstracts MA2022-02, no. 31 (2022): 1150. http://dx.doi.org/10.1149/ma2022-02311150mtgabs.

Full text
Abstract:
2D semiconductor transition metal dichalcogenides have attracted considerable attention due to their layered structure, suitable band gap, electrochemically active unsaturated edges and relatively good stability against photocorrosion. These properties result promising for different applications including, Li-ion batteries, photocatalysis and hydrogen evolution reaction (HER). Apart from the widely studied 2D MoS2, 2D selenide and telluride equivalents, MoSe2 and MoTe2, have recently gained considerable interest due to their higher electrical conductivity, wider inter-layer distance and narrow
APA, Harvard, Vancouver, ISO, and other styles
7

Mirabelli, Gioele, Conor McGeough, Michael Schmidt, et al. "Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2." Journal of Applied Physics 120, no. 12 (2016): 125102. http://dx.doi.org/10.1063/1.4963290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balaji, Yashwanth, Dan Mocuta, Guido Groeseneken, et al. "Tunneling Transistors Based on MoS2/MoTe2 Van der Waals Heterostructures." IEEE Journal of the Electron Devices Society 6 (2018): 1048–55. http://dx.doi.org/10.1109/jeds.2018.2815781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Shangdong, Zhenbei He, Yizhen Ke, et al. "Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure." Applied Physics Express 13, no. 1 (2019): 015007. http://dx.doi.org/10.7567/1882-0786/ab5e72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pan, Shudi, Pavel Valencia-Acuna, Weijin Kong, et al. "Efficient interlayer electron transfer in a MoTe2/WS2/MoS2 trilayer heterostructure." Applied Physics Letters 118, no. 25 (2021): 253106. http://dx.doi.org/10.1063/5.0047909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!