Journal articles on the topic 'MoTe2-MoS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MoTe2-MoS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhu, Xuesong, Dahao Wu, Shengzhi Liang, and Jing Liu. "Strain insensitive flexible photodetector based on molybdenum ditelluride/molybdenum disulfide heterostructure." Nanotechnology 34, no. 15 (2023): 155502. http://dx.doi.org/10.1088/1361-6528/acb359.
Full textGrajcarova, Liliana, Michaela Riflikova, Roman Martonak, and Erio Tosatti. "Structural and electronic behaviour of MoS2, MoSe2and MoTe2at high pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1619. http://dx.doi.org/10.1107/s2053273314083806.
Full textPark, Do-Hyun, and Hyo Chan Lee. "Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures." Micromachines 14, no. 1 (2023): 140. http://dx.doi.org/10.3390/mi14010140.
Full textHibino, Y., S. Ishihara, N. Sawamoto, et al. "Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition." MRS Advances 2, no. 29 (2017): 1557–62. http://dx.doi.org/10.1557/adv.2017.125.
Full textChikukwa, Evernice, Edson Meyer, Johannes Mbese, and Nyengerai Zingwe. "Colloidal Synthesis and Characterization of Molybdenum Chalcogenide Quantum Dots Using a Two-Source Precursor Pathway for Photovoltaic Applications." Molecules 26, no. 14 (2021): 4191. http://dx.doi.org/10.3390/molecules26144191.
Full textZazpe, Raul, Hanna Sopha, Jhonatan Rodriguez Pereira, and Jan M. Macak. "Electrocatalytic Applications of 2D Molybdenum Dichalcogenides By Atomic Layer Deposition." ECS Meeting Abstracts MA2022-02, no. 31 (2022): 1150. http://dx.doi.org/10.1149/ma2022-02311150mtgabs.
Full textMirabelli, Gioele, Conor McGeough, Michael Schmidt, et al. "Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2." Journal of Applied Physics 120, no. 12 (2016): 125102. http://dx.doi.org/10.1063/1.4963290.
Full textBalaji, Yashwanth, Dan Mocuta, Guido Groeseneken, et al. "Tunneling Transistors Based on MoS2/MoTe2 Van der Waals Heterostructures." IEEE Journal of the Electron Devices Society 6 (2018): 1048–55. http://dx.doi.org/10.1109/jeds.2018.2815781.
Full textLi, Shangdong, Zhenbei He, Yizhen Ke, et al. "Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure." Applied Physics Express 13, no. 1 (2019): 015007. http://dx.doi.org/10.7567/1882-0786/ab5e72.
Full textPan, Shudi, Pavel Valencia-Acuna, Weijin Kong, et al. "Efficient interlayer electron transfer in a MoTe2/WS2/MoS2 trilayer heterostructure." Applied Physics Letters 118, no. 25 (2021): 253106. http://dx.doi.org/10.1063/5.0047909.
Full textBurton, B. P., and A. K. Singh. "Prediction of entropy stabilized incommensurate phases in the system MoS2−MoTe2." Journal of Applied Physics 120, no. 15 (2016): 155101. http://dx.doi.org/10.1063/1.4964868.
Full textHu, Ruixue, Enxiu Wu, Yuan Xie, and Jing Liu. "Multifunctional anti-ambipolar p-n junction based on MoTe2/MoS2 heterostructure." Applied Physics Letters 115, no. 7 (2019): 073104. http://dx.doi.org/10.1063/1.5109221.
Full textYao, Hao, Enxiu Wu, and Jing Liu. "Frequency doubler based on a single MoTe2/MoS2 anti-ambipolar heterostructure." Applied Physics Letters 117, no. 12 (2020): 123103. http://dx.doi.org/10.1063/5.0018882.
Full textFang, Qiyi, Zhepeng Zhang, Qingqing Ji, et al. "Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route." Nano Research 10, no. 8 (2017): 2761–71. http://dx.doi.org/10.1007/s12274-017-1480-z.
Full textWang, Feng, Lei Yin, Zhen Xing Wang, et al. "Configuration-Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2." Advanced Functional Materials 26, no. 30 (2016): 5499–506. http://dx.doi.org/10.1002/adfm.201601349.
Full textChen, Yan, Xudong Wang, Guangjian Wu, et al. "High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure." Small 14, no. 9 (2018): 1703293. http://dx.doi.org/10.1002/smll.201703293.
Full textQuan, Chenjing, Chunhui Lu, Chuan He, et al. "Band Alignment of MoTe2 /MoS2 Nanocomposite Films for Enhanced Nonlinear Optical Performance." Advanced Materials Interfaces 6, no. 5 (2019): 1801733. http://dx.doi.org/10.1002/admi.201801733.
Full textHibino, Yusuke, Kota Yamazaki, Yusuke Hashimoto, et al. "The Physical and Chemical Properties of MoS2(1-x)Te2x Alloy Synthesized by Co-sputtering and Chalcogenization and Their Dependence on Fabrication Conditions." MRS Advances 5, no. 31-32 (2020): 1635–42. http://dx.doi.org/10.1557/adv.2020.170.
Full textWang, Jinhua, and Gyaneshwar P. Srivastava. "Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons." Nanomaterials 11, no. 2 (2021): 534. http://dx.doi.org/10.3390/nano11020534.
Full textDiCamillo, Kyle, Sergiy Krylyuk, Wendy Shi, Albert Davydov, and Makarand Paranjape. "Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for Two-Dimensional Materials Applications." IEEE Transactions on Nanotechnology 18 (2019): 144–48. http://dx.doi.org/10.1109/tnano.2018.2868672.
Full textDuong, Ngoc Thanh, Juchan Lee, Seungho Bang, Chulho Park, Seong Chu Lim, and Mun Seok Jeong. "Modulating the Functions of MoS2/MoTe2 van der Waals Heterostructure via Thickness Variation." ACS Nano 13, no. 4 (2019): 4478–85. http://dx.doi.org/10.1021/acsnano.9b00014.
Full textWu, Enxiu, Yuan Xie, Qingzhou Liu, et al. "Photoinduced Doping To Enable Tunable and High-Performance Anti-Ambipolar MoTe2/MoS2 Heterotransistors." ACS Nano 13, no. 5 (2019): 5430–38. http://dx.doi.org/10.1021/acsnano.9b00201.
Full textHussain, Sajjad, Supriya A. Patil, Dhanasekaran Vikraman, et al. "Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells." Applied Surface Science 504 (February 2020): 144401. http://dx.doi.org/10.1016/j.apsusc.2019.144401.
Full textFan, Xaiofeng, David J. Singh, Q. Jiang, and W. T. Zheng. "Pressure evolution of the potential barriers of phase transition of MoS2, MoSe2 and MoTe2." Physical Chemistry Chemical Physics 18, no. 17 (2016): 12080–85. http://dx.doi.org/10.1039/c6cp00715e.
Full textDeGregorio, Zachary P., Youngdong Yoo, and James E. Johns. "Aligned MoO2/MoS2 and MoO2/MoTe2 Freestanding Core/Shell Nanoplates Driven by Surface Interactions." Journal of Physical Chemistry Letters 8, no. 7 (2017): 1631–36. http://dx.doi.org/10.1021/acs.jpclett.7b00307.
Full textLi, Chao, Xiao Yan, Xiongfei Song, et al. "WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment." Nanotechnology 28, no. 41 (2017): 415201. http://dx.doi.org/10.1088/1361-6528/aa810f.
Full textZribi, Rayhane, and Giovanni Neri. "Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules." Sensors 20, no. 18 (2020): 5404. http://dx.doi.org/10.3390/s20185404.
Full textAhuja, Ushma, Ritu Joshi, D. C. Kothari, Harpal Tiwari, and K. Venugopalan. "Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential." Zeitschrift für Naturforschung A 71, no. 3 (2016): 213–23. http://dx.doi.org/10.1515/zna-2015-0393.
Full textDu, Wanying, Xionghui Jia, Zhixuan Cheng, Wanjing Xu, Yanping Li, and Lun Dai. "Low-power-consumption CMOS inverter array based on CVD-grown p-MoTe2 and n-MoS2." iScience 24, no. 12 (2021): 103491. http://dx.doi.org/10.1016/j.isci.2021.103491.
Full textDing, Yao, Nan Zhou, Lin Gan, et al. "Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors." Nano Energy 49 (July 2018): 200–208. http://dx.doi.org/10.1016/j.nanoen.2018.04.055.
Full textShang, Ju Ying, Michael J. Moody, Jiazhen Chen, et al. "In Situ Transport Measurements Reveal Source of Mobility Enhancement of MoS2 and MoTe2 during Dielectric Deposition." ACS Applied Electronic Materials 2, no. 5 (2020): 1273–79. http://dx.doi.org/10.1021/acsaelm.0c00085.
Full textZhang, Kenan, Tianning Zhang, Guanghui Cheng, et al. "Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures." ACS Nano 10, no. 3 (2016): 3852–58. http://dx.doi.org/10.1021/acsnano.6b00980.
Full textGeng, W. T., V. Wang, Y. C. Liu, T. Ohno, and J. Nara. "Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer." Journal of Physical Chemistry Letters 11, no. 7 (2020): 2637–46. http://dx.doi.org/10.1021/acs.jpclett.0c00605.
Full textChen, Yan, Xudong Wang, Guangjian Wu, et al. "Optoelectronics: High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure (Small 9/2018)." Small 14, no. 9 (2018): 1870038. http://dx.doi.org/10.1002/smll.201870038.
Full textWang, Bin, Shengxue Yang, Cong Wang, et al. "Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions." Nanoscale 9, no. 30 (2017): 10733–40. http://dx.doi.org/10.1039/c7nr03445h.
Full textDuong, Ngoc Thanh, Seungho Bang, Seung Mi Lee, et al. "Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure." Nanoscale 10, no. 26 (2018): 12322–29. http://dx.doi.org/10.1039/c8nr01711e.
Full textCristiano, Michele N., Ted V. Tsoulos, and Laura Fabris. "Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2." Journal of Chemical Physics 152, no. 1 (2020): 014705. http://dx.doi.org/10.1063/1.5127279.
Full textAmory, C., J. C. Bernède, and N. Hamdadou. "A study of textured non-stoichiometric MoTe2 thin films used as substrates for textured stoichiometric MoS2 thin films." Vacuum 72, no. 4 (2004): 351–61. http://dx.doi.org/10.1016/j.vacuum.2003.09.001.
Full textAhn, Jongtae, Ji-Hoon Kang, Jihoon Kyhm, et al. "Self-Powered Visible–Invisible Multiband Detection and Imaging Achieved Using High-Performance 2D MoTe2/MoS2 Semivertical Heterojunction Photodiodes." ACS Applied Materials & Interfaces 12, no. 9 (2020): 10858–66. http://dx.doi.org/10.1021/acsami.9b22288.
Full textKhan, Md Azmot Ullah, Naheem Olakunle Adesina, and Jian Xu. "Near Unity Absorbance and Photovoltaic Properties of TMDC/Gold Heterojunction for Solar Cell Application." Key Engineering Materials 918 (April 25, 2022): 97–105. http://dx.doi.org/10.4028/p-uz62m4.
Full textKhan, Md Azmot Ullah, Naheem Olakunle Adesina, and Jian Xu. "Near Unity Absorbance and Photovoltaic Properties of TMDC/Gold Heterojunction for Solar Cell Application." Key Engineering Materials 918 (April 25, 2022): 97–105. http://dx.doi.org/10.4028/p-uz62m4.
Full textLate, Dattatray J., and Claudia Wiemer. "Advances in low dimensional and 2D materials." AIP Advances 12, no. 11 (2022): 110401. http://dx.doi.org/10.1063/5.0129120.
Full textGomes, Anderson S. L., Cecília L. A. V. Campos, Cid B. de Araújo, et al. "Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities." Nanomaterials 13, no. 15 (2023): 2267. http://dx.doi.org/10.3390/nano13152267.
Full textWang, Yaqian, Yongli Shen, Xiong Xiao, Linxiu Dai, Shuang Yao, and Changhua An. "Topology conversion of 1T MoS2 to S-doped 2H-MoTe2 nanosheets with Te vacancies for enhanced electrocatalytic hydrogen evolution." Science China Materials 64, no. 9 (2021): 2202–11. http://dx.doi.org/10.1007/s40843-020-1612-y.
Full textXie, Yuan, Enxiu Wu, Shuangqing Fan, et al. "Modulation of MoTe2/MoS2 van der Waals heterojunctions for multifunctional devices using N2O plasma with an opposite doping effect." Nanoscale 13, no. 16 (2021): 7851–60. http://dx.doi.org/10.1039/d0nr08814e.
Full textDiaz, Horacio Coy, Yujing Ma, Redhouane Chaghi, and Matthias Batzill. "High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2." Applied Physics Letters 108, no. 19 (2016): 191606. http://dx.doi.org/10.1063/1.4949559.
Full textPezeshki, Atiye, Seyed Hossein Hosseini Shokouh, Pyo Jin Jeon та ін. "Static and Dynamic Performance of Complementary Inverters Based on Nanosheet α-MoTe2 p-Channel and MoS2 n-Channel Transistors". ACS Nano 10, № 1 (2015): 1118–25. http://dx.doi.org/10.1021/acsnano.5b06419.
Full textCho, Yongjae, Ji Hoon Park, Minju Kim, et al. "Impact of Organic Molecule-Induced Charge Transfer on Operating Voltage Control of Both n-MoS2 and p-MoTe2 Transistors." Nano Letters 19, no. 4 (2019): 2456–63. http://dx.doi.org/10.1021/acs.nanolett.9b00019.
Full textCaturello, Naidel A. M. S., Rafael Besse, Augusto C. H. Da Silva, Diego Guedes-Sobrinho, Matheus P. Lima, and Juarez L. F. Da Silva. "Ab Initio Investigation of Atomistic Insights into the Nanoflake Formation of Transition-Metal Dichalcogenides: The Examples of MoS2, MoSe2, and MoTe2." Journal of Physical Chemistry C 122, no. 47 (2018): 27059–69. http://dx.doi.org/10.1021/acs.jpcc.8b07127.
Full textVaradwaj, Pradeep, Helder Marques, Arpita Varadwaj, and Koichi Yamashita. "Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides." Inorganics 10, no. 1 (2022): 11. http://dx.doi.org/10.3390/inorganics10010011.
Full text