Academic literature on the topic 'Motion of the wheel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Motion of the wheel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Motion of the wheel"
Ryoo, Young-Jae, Dae-Yeong Im, and Hyun-Rok Cha. "Design of Robotic Vehicle for Personal Mobility with Electric-Driven Three-Wheels." International Journal of Humanoid Robotics 13, no. 04 (November 29, 2016): 1650020. http://dx.doi.org/10.1142/s0219843616500201.
Full textQuaglia, Giuseppe, Daniela Maffiodo, and Francesco Pescarmona. "A Novel Continuous Alternate Motion Mechanism With Two Input Wheels." Journal of Mechanical Design 129, no. 8 (June 27, 2006): 858–64. http://dx.doi.org/10.1115/1.2735638.
Full textKumagai, Masaaki, and Kaoru Tamada. "Wheel Locomotion of a Biped Robot Using Passive Rollers – Large Biped Robot Roller Walking Using a Variable-Curvature Truck –." Journal of Robotics and Mechatronics 20, no. 2 (April 20, 2008): 206–12. http://dx.doi.org/10.20965/jrm.2008.p0206.
Full textDong, Yu Hong, Zong Quan Deng, and Hai Bo Gao. "Wheel Velocity Analysis of a Rover with Six Wheels Independently Driven on Uneven Terrain." Key Engineering Materials 392-394 (October 2008): 335–640. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.335.
Full textSong, Jeonghoon. "Enhanced braking and steering yaw motion controllers with a non-linear observer for improved vehicle stability." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, no. 3 (March 1, 2008): 293–304. http://dx.doi.org/10.1243/09544070jauto662.
Full textHolland, J. B., M. J. D. Hayes, and R. G. Langlois. "A SLIP MODEL FOR THE SPHERICAL ACTUATION OF THE ATLAS MOTION PLATFORM." Transactions of the Canadian Society for Mechanical Engineering 29, no. 4 (December 2005): 711–20. http://dx.doi.org/10.1139/tcsme-2005-0048.
Full textAdamchuk, V., V. Bulgakov, V. Nadykto, and I. Golovach. "Theory of motion controllability of a wheel machine-tractor aggregate." Agricultural Science and Practice 3, no. 2 (July 15, 2016): 3–10. http://dx.doi.org/10.15407/agrisp3.02.003.
Full textHAYES, M. J. D., and R. G. LANGLOIS. "ATLAS: A NOVEL KINEMATIC ARCHITECTURE FOR SIX DOF MOTION PLATFORMS." Transactions of the Canadian Society for Mechanical Engineering 29, no. 4 (December 2005): 701–9. http://dx.doi.org/10.1139/tcsme-2005-0047.
Full textAlexandru, Cătălin. "A mechanical integral steering system for increasing the stability and handling of motor vehicles." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 8 (December 30, 2015): 1465–80. http://dx.doi.org/10.1177/0954406215624465.
Full textZhao, Jianwei, Yuanshuang Liu, Yuanyuan Qu, Feng Bian, and Yu Ban. "Model and simulation of four-wheeled robot based on Mecanum wheel." International Journal of Modeling, Simulation, and Scientific Computing 08, no. 02 (October 24, 2016): 1750015. http://dx.doi.org/10.1142/s1793962317500155.
Full textDissertations / Theses on the topic "Motion of the wheel"
Plantenberg, Detlef Holger. "Adaptive motion control for a four wheel steered mobile robot." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341262.
Full textGandhi, Yogesh. "Motion planning and control for Differential Drive Wheel Mobile Robot (DDWMR)." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textArrizabalaga, Aguirregomezcorta Jon. "MPC based Caster Wheel Aware Motion Planning for Differential Drive Robots." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281702.
Full textDen ärvda rotationen i ett hjul möjliggör rörelse i vilken riktning som helst, men fås på bekostnad av reaktionsmoment. När de implementeras i en mobil robot har dessa krafter en negativ inverkan på dess prestanda. Ett tillvägagångssätt är att begränsa rotationer på plats genom att applicera ett filter på rörelseplannerns utgång. Denna formulering komprometterar dock navigeringens slutförande i kritiska scenarier, såsom parkering, kurvor i smala korridorer eller navigering i närheten av höga hinder. Därför beaktar vi i denna avhandling påverkan av hjul på hjulplaneringen, som ofta presenteras som lokal planering. Detta arbete föreslår en Model Predictive Control (MPC) -baserad lokal planerare som integrerar svängbara länkhjuls fysik i rörelseplaneringsstadiet. En kugghjulmedveten term kombineras med en referensspårningsbaserad navigering, vilket leder till formuleringen av Caster Wheel Aware Local Planner (CWAWLP). Eftersom denna metod kräver kunskap om svängbara länkhjuls tillstånd och det inte finns någon sensor som ger denna information, formuleras också en hjulhjulstillståndsobservatör. För att utvärdera effekten av det medvetna begreppet svängbara änkhjul jämförs CWAWLP med en Caster Wheel-baserad Agnostic Local Planner (CWAGLP) och en Caster Wheel-baserad Agnostic Planner Local Planner with Path Filter (CWPFLP). Efter att ha kört simuleringar för tre fallstudier i ett virtuellt ramverk genomförs två experimentella fallstudier i en intra-logistikrobot. Dessa utvärderas enligt navigeringens kvalitet, vridmomentanvändning och energiförbrukning. Enligt de mönster som observerats i utvärderingen når CWAWLP ett längre avstånd än CWAGLP utan att sänka navigeringens kvalitet. Samtidigt liknar motorns vridmoment dem som CWPFLP. Därför kan CWAWLP ta hänsyn till svängbara länkhjuls fysik utan att offra navigationsfunktionerna. Den formulerade medhjulningsmedveten termen är kompatibel med vilken MPC-baserad navigationsalgoritm som helst och ärver härledningen av en observatör som kan uppskatta hjulets rotationsvinklar och rullningshastigheter. Även om hjulhjälpmedvetenheten har implementerats i en differentierad robot, är detta tillvägagångssätt också tillämpligt på fordon med ett alternativt drivsystem, såsom billiknande robotar.
Tsinias, Vasileios. "A hybrid approach to tyre modelling based on modal testing and non-linear tyre-wheel motion." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/17852.
Full textKim, Bumsoo. "Motion control of an autonomous vehicle with loss of wheel-ground contact avoidance using dynamic model based predictive control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58286.pdf.
Full textSeegmiller, Neal A. "Dynamic Model Formulation and Calibration for Wheeled Mobile Robots." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/460.
Full textMiranda, La Hera Pedro Xavier. "Contributions to Motion Planning and Orbital Stabilization : Case studies: Furuta Pendulum swing up, Inertia Wheel oscillations and Biped Robot walking." Licentiate thesis, Umeå : Umepå universitet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1874.
Full textKimmel, Shawn Christopher. "Considerations for and Implementations of Deliberative and Reactive Motion Planning Strategies for the Novel Actuated Rimless Spoke Wheel Robot IMPASS for the Two-Dimensional Sagittal Plane." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32324.
Full textMaster of Science
Grönlund, Arthur, and Christos Tolis. "Riderless self-balancing bicycle : Derivation and implementation of a time variantlinearized state space model for balancing a bicycle in motion by turning the front wheel." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230169.
Full textSelf-driving vehicles are becoming more and more prevalentin society, with buses and cars close to being implementedin the public domain. Self-driving two-wheeled vehiclescould be a solution for space-efficient transportationin cities, where space is becoming a larger issue.The purpose of this project was to develop and implement alinearized time variant state space model for balancing sucha two-wheeled vehicle in the form of a bicycle by turningits front wheel. To test the derived model a small demonstratorwas built and experimented with.The final conclusion was that the model could be a simplesolution for balancing an electric bicycle. However, furtherexperimentation on a bigger scale would have to be doneto reach a more decisive conclusion.
Hosseinipour, Milad. "Electromechanical Design and Development of the Virginia Tech Roller Rig Testing Facility for Wheel-rail Contact Mechanics and Dynamics." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82542.
Full textPh. D.
Books on the topic "Motion of the wheel"
Brown, David W. R. The Asa Jackson perpetual motion wheel: Complete specifications : including, historical notes by Asa's great-great-grandson, over ninety detailed drawings, companion CD with over 500 photographs. Norris, TN: Museum of Appalachia, 2003.
Find full textJ, Huijbregts Mark A., ed. Biofuels for road transport: A seed to wheel perspective. London: Springer, 2009.
Find full textDrake, Gilbert N. Survival behind the wheel: Safety, knowledge, strategy, and performance for all who drive. Sarasota Fl: Distributed by BookWorld, 1995.
Find full textMather, Phil. Scooters service and repair manual: Automatic transmission, 50 to 250cc, two-wheel, carbureted models. Newbury Park, CA: Haynes North America, Inc., 2009.
Find full textAll about Thelma and Eve: Sidekicks and third wheels. Urbana: University of Illinois Press, 2002.
Find full textManual transmissions and transaxles. San Diego: Harcourt Brace Jovanovich, Technology Publications, 1990.
Find full textManual transmissions and transaxles. 2nd ed. Albany, N.Y: Delmar Publishers, 1997.
Find full textBook chapters on the topic "Motion of the wheel"
Wang, Xuezhu, Xiangtao Zhuan, Guilin Zheng, and Zheng Chen. "Motion Dynamics Modelling of an Electric Wheel Robot." In Intelligent Robotics and Applications, 159–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16584-9_15.
Full textLeber, Titus. "Interactively Setting in Motion the Wheel of Law." In X.media.publishing, 43–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18663-9_6.
Full textKidwell, Donna K., Cliff Zintgraff, and Gregory P. Pogue. "The STEM Technopolis Wheel: In Motion Through STEM Learning." In STEM in the Technopolis: The Power of STEM Education in Regional Technology Policy, 65–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39851-4_4.
Full textPasupuleti, Devasena, Dimple Dannana, Raghuveer Maddi, Uday Manne, and Rajeevlochana G. Chittawadigi. "Intuitive Control of Three Omni-Wheel-Based Mobile Platforms Using Leap Motion." In Advances in Intelligent Systems and Computing, 673–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6984-9_53.
Full textWeiss, Avishai, Frederick Leve, Ilya V. Kolmanovsky, and Moriba Jah. "Reaction Wheel Parameter Identification and Control through Receding Horizon-Based Null Motion Excitation." In Advances in Estimation, Navigation, and Spacecraft Control, 477–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44785-7_25.
Full textMa, Yue, Changle Xiang, Qingdong Yan, and Quanmin Zhu. "Motion Stabilizing Controller of Off-Road Unmanned Wheel Vehicle in 3 Dimensional Space." In Lecture Notes in Electrical Engineering, 275–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33838-0_25.
Full textManne, Uday, Raghuveer Maddi, Dimple Dannana, Devasena Pasupuleti, and Rajeevlochana G. Chittawadigi. "Two Degree-Of-Freedom Omni-Wheel Based Mobile Robot Platform for Translatory Motion." In Lecture Notes in Mechanical Engineering, 125–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1769-0_12.
Full textZalewski, Jarosław. "Selected Problems of a Motor Vehicle Motion in a Turn After Steering Wheel Release." In Communications in Computer and Information Science, 273–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27547-1_20.
Full textSmirnov, Kirill Andreevich. "Simulation of rectilinear motion of a four-wheel car-like robot with an electromechanical drivetrain." In Advances in Mechanism and Machine Science, 2671–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20131-9_264.
Full textTrojnacki, Maciej. "Determination of Forces and Moments of Force Transmitted by the Wheel of a Mobile Robot During Motion." In Advances in Intelligent Systems and Computing, 205–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26886-6_13.
Full textConference papers on the topic "Motion of the wheel"
Ghabcheloo, Reza, Mika Hyvo¨nen, Jarno Uusisalo, Otso Karhu, Juha Ja¨ra¨, and Kalevi Huhtala. "Autonomous Motion Control of a Wheel Loader." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2653.
Full textKe, Qiu, and Luo Feng. "Research on motion system of wheel robot." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5768587.
Full textDerby, Stephen J., Kurt Anderson, Steven Winckler, and Jason Winckler. "Motion Characteristics of a Square Wheel Car." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99140.
Full textGoodell, I. Henry P., Robert Dennis, and Sharon Joines. "Tensegrity-Inspired Wheel with Force-Based Motion." In 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481899.087.
Full textVantsevich, V. V. "Inverse Wheel Dynamics." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13787.
Full textAgrawal, Sunil K., Jin Yan, and Jared Rochester. "Analytics and Motion Planning of a Novel Four-Wheel Vehicle With Expanding Wheels." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME, 2002. http://dx.doi.org/10.1115/detc2002/mech-34348.
Full textCarvalhosa, A., P. Machado, A. Sousa, and J. C. Alves. "Soft core robot with joint wheel motion controller." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415303.
Full textOhira, Takashi. "Via-wheel power transfer to vehicles in motion." In 2013 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2013. http://dx.doi.org/10.1109/wpt.2013.6556928.
Full textShigeru, Sarata, Osumi Hisashi, Hirai Yusuke, and Matshushima Gen. "Trajectory Arrangement of Bucket Motion of Wheel Loader." In 20th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2003. http://dx.doi.org/10.22260/isarc2003/0020.
Full textDeng, Zongquan, Haitao Fang, Yuhong Dong, and Jianguo Tao. "Research on Wheel-walking Motion Control of Lunar Rover with Six Cylinder-conical Wheels." In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303574.
Full textReports on the topic "Motion of the wheel"
Slayzak, S. J., and J. P. Ryan. Desiccant Dehumidification Wheel Test Guide. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/775748.
Full textPharaon, Jean W. Tracked Vehicle Road Wheel Puller. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada496121.
Full textBack, B. B., C. N. Davids, and J. Falout. Rotating target wheel for the FMA. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166371.
Full textEls, P. S. Wheel Force Transducer Research and Development. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada557517.
Full textOlson, Sterling Stewart, Chris Clayton Chartrand, and Jesse D. Roberts. Big Wheel Farm: Farmland Scour Reduction. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1592853.
Full textDoerry, Armin W. Smoothing Motion Estimates for Radar Motion Compensation. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1369525.
Full textYapp, Clifford. Vehicle Tire and Wheel Creation in BRL-CAD. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada499661.
Full textBan, Akane, and Hisashi Sugiyama. Evaluation Method of Touch Feeling for Steering Wheel. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0249.
Full textSinghal, R. K., and T. S. Golosinski. Basic consideration in selection of bucket wheel excavators. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304926.
Full textFite, Jesse, S. Nemesure, M. Sivertz, A. Rusek, and I.-H. Chiang. Beam Degrader Wheel for Gold Beams at NSRL. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1775551.
Full text