Journal articles on the topic 'Motivic Adams spectral sequence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Motivic Adams spectral sequence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ormsby, Kyle M. "Motivic invariants of p-adic fields." Journal of K-theory 7, no. 3 (2011): 597–618. http://dx.doi.org/10.1017/is011004017jkt153.
Full textDugger, Daniel, and Daniel C. Isaksen. "The motivic Adams spectral sequence." Geometry & Topology 14, no. 2 (2010): 967–1014. http://dx.doi.org/10.2140/gt.2010.14.967.
Full textHu, P., I. Kriz, and K. Ormsby. "Convergence of the Motivic Adams Spectral Sequence." Journal of K-theory 7, no. 3 (2011): 573–96. http://dx.doi.org/10.1017/is011003012jkt150.
Full textIsaksen, Daniel C., and Armira Shkembi. "Motivic connective K-theories and the cohomology of A(1)." Journal of K-theory 7, no. 3 (2011): 619–61. http://dx.doi.org/10.1017/is011004009jkt154.
Full textGregersen, Thomas, and John Rognes. "On the motivic Segal conjecture." Journal of Topology 16, no. 3 (2023): 1258–313. http://dx.doi.org/10.1112/topo.12311.
Full textHu, Po, Igor Kriz, and Kyle Ormsby. "Remarks on motivic homotopy theory over algebraically closed fields." Journal of K-Theory 7, no. 1 (2010): 55–89. http://dx.doi.org/10.1017/is010001012jkt098.
Full textIsaksen, Daniel C., Hana Jia Kong, Guchuan Li, Yangyang Ruan, and Heyi Zhu. "The C-motivic Adams-Novikov spectral sequence for topological modular forms." Advances in Mathematics 458 (December 2024): 109966. http://dx.doi.org/10.1016/j.aim.2024.109966.
Full textIsaksen, Daniel C., Guozhen Wang, and Zhouli Xu. "Stable homotopy groups of spheres." Proceedings of the National Academy of Sciences 117, no. 40 (2020): 24757–63. http://dx.doi.org/10.1073/pnas.2012335117.
Full textGarkusha, Grigory, and Ivan Panin. "ON THE MOTIVIC SPECTRAL SEQUENCE." Journal of the Institute of Mathematics of Jussieu 17, no. 1 (2015): 137–70. http://dx.doi.org/10.1017/s1474748015000419.
Full textYagunov, Serge. "Motivic cohomology spectral sequence and Steenrod operations." Compositio Mathematica 152, no. 10 (2016): 2113–33. http://dx.doi.org/10.1112/s0010437x16007594.
Full textArapura, Donu. "The Leray spectral sequence is motivic." Inventiones mathematicae 160, no. 3 (2004): 567–89. http://dx.doi.org/10.1007/s00222-004-0416-x.
Full textLellmann, Wolfgang, and Mark Mahowald. "The bo-Adams Spectral Sequence." Transactions of the American Mathematical Society 300, no. 2 (1987): 593. http://dx.doi.org/10.2307/2000359.
Full textYagita, Nobuaki. "Motivic cohomology of quadrics and the coniveau spectral sequence." Journal of K-theory 6, no. 3 (2010): 547–89. http://dx.doi.org/10.1017/is008008012jkt084.
Full textDupont, Clément, and Daniel Juteau. "The localization spectral sequence in the motivic setting." Algebraic & Geometric Topology 24, no. 3 (2024): 1431–66. http://dx.doi.org/10.2140/agt.2024.24.1431.
Full textKrishna, Amalendu, and Pablo Pelaez. "Motivic spectral sequence for relative homotopy K-theory." ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA - CLASSE DI SCIENZE 21, no. 1 (2020): 411–47. http://dx.doi.org/10.2422/2036-2145.201802_006.
Full textBurklund, Robert, and Piotr Pstrągowski. "Quivers and the Adams spectral sequence." Advances in Mathematics 471 (June 2025): 110270. https://doi.org/10.1016/j.aim.2025.110270.
Full textShinder, Evgeny. "On the motive of the group of units of a division algebra." Journal of K-theory 13, no. 3 (2014): 533–61. http://dx.doi.org/10.1017/is014003007jkt258.
Full textWang, Yuyu, and Jianbo Wang. "The Convergence of Some Products in the Adams Spectral Sequence." MATHEMATICA SCANDINAVICA 117, no. 2 (2015): 304. http://dx.doi.org/10.7146/math.scand.a-22871.
Full textCulver, Dominic Leon, and Paul VanKoughnett. "On the K(1)-local homotopy of $$\mathrm {tmf}\wedge \mathrm {tmf}$$." Journal of Homotopy and Related Structures 16, no. 3 (2021): 367–426. http://dx.doi.org/10.1007/s40062-021-00283-7.
Full textBaker, Andrew, and Andrey Lazarev. "On the Adams spectral sequence forR–modules." Algebraic & Geometric Topology 1, no. 1 (2001): 173–99. http://dx.doi.org/10.2140/agt.2001.1.173.
Full textMahowald, Mark, and Hal Sadofsky. "$v_n$ telescopes and the Adams spectral sequence." Duke Mathematical Journal 78, no. 1 (1995): 101–29. http://dx.doi.org/10.1215/s0012-7094-95-07806-5.
Full textLellmann, Wolfgang, and Mark Mahowald. "The $b{\rm o}$-Adams spectral sequence." Transactions of the American Mathematical Society 300, no. 2 (1987): 593. http://dx.doi.org/10.1090/s0002-9947-1987-0876468-1.
Full textBehrens, Mark. "Root invariants in the Adams spectral sequence." Transactions of the American Mathematical Society 358, no. 10 (2005): 4279–341. http://dx.doi.org/10.1090/s0002-9947-05-03773-6.
Full textBlanc, David, and Surojit Ghosh. "Mapping algebras and the Adams spectral sequence." Homology, Homotopy and Applications 23, no. 1 (2021): 219–42. http://dx.doi.org/10.4310/hha.2021.v23.n1.a12.
Full textXiangjun, Wang. "Some notes on the adams spectral sequence." Acta Mathematica Sinica 10, no. 1 (1994): 4–10. http://dx.doi.org/10.1007/bf02561542.
Full textCarrick, Christian, Michael A. Hill, and Douglas C. Ravenel. "The homological slice spectral sequence in motivic and Real bordism." Advances in Mathematics 458 (December 2024): 109955. http://dx.doi.org/10.1016/j.aim.2024.109955.
Full textFriedlander, E. "The spectral sequence relating algebraic K-theory to motivic cohomology." Annales Scientifiques de lʼÉcole Normale Supérieure 35, no. 6 (2002): 773–875. http://dx.doi.org/10.1016/s0012-9593(02)01109-6.
Full textMinami, Norihiko. "The Adams Spectral Sequence and the Triple Transfer." American Journal of Mathematics 117, no. 4 (1995): 965. http://dx.doi.org/10.2307/2374955.
Full textBasu, Samik, David Blanc, and Debasis Sen. "Higher structure in the unstable Adams spectral sequence." Homology, Homotopy and Applications 23, no. 2 (2021): 69–94. http://dx.doi.org/10.4310/hha.2021.v23.n2.a5.
Full textBotvinnik, B. I., and S. O. Kochman. "Adams spectral sequence and higher torsion in $MSp_*$." Publicacions Matemàtiques 40 (January 1, 1996): 157–93. http://dx.doi.org/10.5565/publmat_40196_11.
Full textMahowald, Mark, and Charles Rezk. "Brown-Comenetz duality and the Adams spectral sequence." American Journal of Mathematics 121, no. 6 (1999): 1153–77. http://dx.doi.org/10.1353/ajm.1999.0043.
Full textMahowald, Mark, and Paul Shick. "Periodic phenomena in the classical Adams spectral sequence." Transactions of the American Mathematical Society 300, no. 1 (1987): 191. http://dx.doi.org/10.1090/s0002-9947-1987-0871672-0.
Full textBaues, Hans-Joachim, and Mamuka Jibladze. "Secondary derived functors and the Adams spectral sequence." Topology 45, no. 2 (2006): 295–324. http://dx.doi.org/10.1016/j.top.2005.08.001.
Full textBaues, Hans-Joachim, and Martin Frankland. "2-track algebras and the Adams spectral sequence." Journal of Homotopy and Related Structures 11, no. 4 (2016): 679–713. http://dx.doi.org/10.1007/s40062-016-0147-x.
Full textKrueger, Warren M. "The 2-primary K-theory Adams spectral sequence." Journal of Pure and Applied Algebra 36 (1985): 143–58. http://dx.doi.org/10.1016/0022-4049(85)90067-2.
Full textBelmont, Eva. "Localizing the E2 page of the Adams spectral sequence." Algebraic & Geometric Topology 20, no. 4 (2020): 1965–2028. http://dx.doi.org/10.2140/agt.2020.20.1965.
Full textIWASE, Norio. "CERTAIN MISSING TERMS IN AN UNSTABLE ADAMS SPECTRAL SEQUENCE." Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics 41, no. 2 (1987): 97–113. http://dx.doi.org/10.2206/kyushumfs.41.97.
Full textCohen, Ralph, Wen Lin, and Mark Mahowald. "The Adams spectral sequence of the real projective spaces." Pacific Journal of Mathematics 134, no. 1 (1988): 27–55. http://dx.doi.org/10.2140/pjm.1988.134.27.
Full textNakai, Hirofumi, та Douglas C. Ravenel. "On β-elements in the Adams-Novikov spectral sequence". Journal of Topology 2, № 2 (2009): 295–320. http://dx.doi.org/10.1112/jtopol/jtp012.
Full textLiu, Xiugui, and Hao Zhao. "On a product in the classical Adams spectral sequence." Proceedings of the American Mathematical Society 137, no. 07 (2009): 2489–96. http://dx.doi.org/10.1090/s0002-9939-09-09809-8.
Full textBlanc, David A. "Operations on resolutions and the reverse Adams spectral sequence." Transactions of the American Mathematical Society 342, no. 1 (1994): 197–213. http://dx.doi.org/10.1090/s0002-9947-1994-1132432-2.
Full textDavis, Donald M., and Mark Mahowald. "v 1-Periodicity in the unstable adams spectral sequence." Mathematische Zeitschrift 204, no. 1 (1990): 319–39. http://dx.doi.org/10.1007/bf02570877.
Full textBaues, Hans-Joachim, and David Blanc. "Higher order derived functors and the Adams spectral sequence." Journal of Pure and Applied Algebra 219, no. 2 (2015): 199–239. http://dx.doi.org/10.1016/j.jpaa.2014.04.018.
Full textLevine, Marc. "The Adams–Novikov spectral sequence and Voevodsky’s slice tower." Geometry & Topology 19, no. 5 (2015): 2691–740. http://dx.doi.org/10.2140/gt.2015.19.2691.
Full textLin, Jin Kun. "A pull back theorem in the Adams spectral sequence." Acta Mathematica Sinica, English Series 24, no. 3 (2008): 471–90. http://dx.doi.org/10.1007/s10114-007-1018-5.
Full textLesh, Kathryn. "The unstable Adams spectral sequence for two-stage towers." Topology and its Applications 101, no. 2 (2000): 161–80. http://dx.doi.org/10.1016/s0166-8641(98)00119-9.
Full textKato, Ryo, and Katsumi Shimomura. "The first line of the Bockstein spectral sequence on a monochromatic spectrum at an odd prime." Nagoya Mathematical Journal 207 (September 2012): 139–57. http://dx.doi.org/10.1017/s0027763000022339.
Full textShick, Paul. "Odd primary periodic phenomena in the classical Adams spectral sequence." Transactions of the American Mathematical Society 309, no. 1 (1988): 77. http://dx.doi.org/10.1090/s0002-9947-1988-0938921-2.
Full textBeaudry, A., M. Behrens, P. Bhattacharya, D. Culver, and Z. Xu. "On the E2‐term of the bo‐Adams spectral sequence." Journal of Topology 13, no. 1 (2020): 356–415. http://dx.doi.org/10.1112/topo.12136.
Full textGonzález, Jesús. "A vanishing line in the BP〈1〉-Adams spectral sequence." Topology 39, no. 6 (2000): 1137–53. http://dx.doi.org/10.1016/s0040-9383(99)00002-6.
Full text