Journal articles on the topic 'Mott-Schottky'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mott-Schottky.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fattah-alhosseini, A., M. H. Alemi, and S. Banaei. "Diffusivity of Point Defects in the Passive Film on Stainless Steel." International Journal of Electrochemistry 2011 (2011): 1–6. http://dx.doi.org/10.4061/2011/968512.
Full textRajbhandari, A., K. Manandhar, and R. R. Pradhananga. "Mott-Schottky Analysis of Laboratory Prepared Ag2S-AgI Membrane Electrode." Journal of Nepal Chemical Society 28 (May 23, 2013): 89–93. http://dx.doi.org/10.3126/jncs.v28i0.8113.
Full textLI, YULIN, JUNJIE WANG, and QINGDONG ZHONG. "A NOVEL METHOD FOR STUDYING THE CORROSION RESISTANCE AND MICROSTRUCTURE OF ENAMEL COATING MODIFIED ON HIGH-STRENGTH STEEL IN 3.5 wt.% NaCl SOLUTION." Surface Review and Letters 27, no. 02 (May 27, 2019): 1950098. http://dx.doi.org/10.1142/s0218625x19500987.
Full textWu, Peiwen, Zili Wu, David R. Mullins, Shi-Ze Yang, Xue Han, Yafen Zhang, Guo Shiou Foo, et al. "Promoting Pt catalysis for CO oxidation via the Mott–Schottky effect." Nanoscale 11, no. 40 (2019): 18568–74. http://dx.doi.org/10.1039/c9nr04055b.
Full textPolozhentseva J.A., Alekseeva E.V., and Karushev M.P. "Semiconductor Properties of Polymer Films Based on Nickel Complexwith Salen-type Ligand." Physics of the Solid State 64, no. 1 (2022): 62. http://dx.doi.org/10.21883/pss.2022.01.52489.166.
Full textLiu, Jing, Akram Alfantazi, and Edouard Asselin. "The Effect of Chloride Ions on the Passive Films of Titanium in Sulfuric Acids." Solid State Phenomena 227 (January 2015): 67–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.67.
Full textZhang, Guangqiang, Hong Su, and Yan Zhang. "Construction of Glutinous Rice Potpourri-like MOTT−Schottky Ni/CeO2 Heterojunction Nanosheets for Robust Electrochemical Water Reduction." Energies 15, no. 24 (December 13, 2022): 9443. http://dx.doi.org/10.3390/en15249443.
Full textXu, Shao-Hong, Jing-Feng Wang, Alexsandra Valério, Wen-Yu Zhang, Jia-Lun Sun, and Dan-Nong He. "Activating Co nanoparticles on graphitic carbon nitride by tuning the Schottky barrier via P doping for the efficient dehydrogenation of ammonia-borane." Inorganic Chemistry Frontiers 8, no. 1 (2021): 48–58. http://dx.doi.org/10.1039/d0qi00659a.
Full textZhong, Hong, Can Yang, Lizhou Fan, Zhihua Fu, Xue Yang, Xinchen Wang, and Ruihu Wang. "Dyadic promotion of photocatalytic aerobic oxidation via the Mott–Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers." Energy & Environmental Science 12, no. 1 (2019): 418–26. http://dx.doi.org/10.1039/c8ee02727g.
Full textHankin, Anna, Franky E. Bedoya-Lora, John C. Alexander, Anna Regoutz, and Geoff H. Kelsall. "Flat band potential determination: avoiding the pitfalls." Journal of Materials Chemistry A 7, no. 45 (2019): 26162–76. http://dx.doi.org/10.1039/c9ta09569a.
Full textLaGasse, Samuel W., Prathamesh Dhakras, Kenji Watanabe, Takashi Taniguchi, and Ji Ung Lee. "Schottky-Mott Limit: Gate-Tunable Graphene-WSe2 Heterojunctions at the Schottky-Mott Limit (Adv. Mater. 24/2019)." Advanced Materials 31, no. 24 (June 2019): 1970169. http://dx.doi.org/10.1002/adma.201970169.
Full textWang, Yuankun, Ruifang Zhang, Zehui Sun, Hu Wu, Shiyao Lu, Jianan Wang, Wei Yu, Jiamei Liu, Guoxin Gao, and Shujiang Ding. "Mott‐Schottky Electrocatalyst: Spontaneously Formed Mott‐Schottky Electrocatalyst for Lithium‐Sulfur Batteries (Adv. Mater. Interfaces 22/2020)." Advanced Materials Interfaces 7, no. 22 (November 2020): 2070122. http://dx.doi.org/10.1002/admi.202070122.
Full textCao, X. Y., X. Xing, N. Zhang, H. Gao, M. Y. Zhang, Y. C. Shang, and X. T. Zhang. "Quantitative investigation on the effect of hydrogenation on the performance of MnO2/H-TiO2 composite electrodes for supercapacitors." Journal of Materials Chemistry A 3, no. 7 (2015): 3785–93. http://dx.doi.org/10.1039/c4ta06138a.
Full textJin, Dongnv, Jiliang Ma, and Runcang Sun. "Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott–Schottky heterojunction for efficient photocatalytic reforming of biomass." Journal of Materials Chemistry C 10, no. 9 (2022): 3500–3509. http://dx.doi.org/10.1039/d1tc05931a.
Full textHuang, Yuan, Haoting Yan, Chenyang Zhang, Yize Wang, Qinhong Wei, and Renkun Zhang. "Interfacial Electronic Effects in Co@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene." Nanomaterials 11, no. 11 (October 20, 2021): 2776. http://dx.doi.org/10.3390/nano11112776.
Full textBraun, Christian M., Akira Fujishima, and Kenichi Honda. "THE FREQUENCY DEPENDENCE OF MOTT–SCHOTTKY PLOTS." Chemistry Letters 14, no. 11 (November 5, 1985): 1763–66. http://dx.doi.org/10.1246/cl.1985.1763.
Full textWindisch, Charles F., and Gregory J. Exarhos. "Mott–Schottky analysis of thin ZnO films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18, no. 4 (July 2000): 1677–80. http://dx.doi.org/10.1116/1.582406.
Full textDíez-García, María I., Damián Monllor-Satoca, and Roberto Gómez. "Comment on “Flat band potential determination: avoiding the pitfalls” by A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz and G. H. Kelsall, J. Mater. Chem. A, 2019, 7, 26162." Journal of Materials Chemistry A 10, no. 15 (2022): 8591–93. http://dx.doi.org/10.1039/d1ta06474f.
Full textWu, Mengchen, Jing Zhao, Congling Li, and Rui Liu. "Heterogeneity in a metal–organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation." Journal of Materials Chemistry A 10, no. 9 (2022): 4791–99. http://dx.doi.org/10.1039/d1ta10903k.
Full textZhao, Yang, Ping Liang, Yanhua Shi, Yunxia Zhang, and Tao Yang. "The Pitting Susceptibility Investigation of Passive Films Formed on X70, X80, and X100 Pipeline Steels by Electrochemical Noise and Mott-Schottky Measurements." International Journal of Corrosion 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/298584.
Full textLiang, Ranxi, Chaozhu Shu, Anjun Hu, Chenxi Xu, Ruixin Zheng, Minglu Li, Yaowen Guo, Miao He, Yu Yan, and Jianping Long. "Tuning the electronic band structure of Mott–Schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium–oxygen batteries." Journal of Materials Chemistry A 8, no. 22 (2020): 11337–45. http://dx.doi.org/10.1039/d0ta02970j.
Full textFredj, Zina, Abdoullatif Baraket, Mounir Ben Ali, Nadia Zine, Miguel Zabala, Joan Bausells, Abdelhamid Elaissari, Nsikak U. Benson, Nicole Jaffrezic-Renault, and Abdelhamid Errachid. "Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses." Chemosensors 9, no. 1 (January 10, 2021): 13. http://dx.doi.org/10.3390/chemosensors9010013.
Full textFredj, Zina, Abdoullatif Baraket, Mounir Ben Ali, Nadia Zine, Miguel Zabala, Joan Bausells, Abdelhamid Elaissari, Nsikak U. Benson, Nicole Jaffrezic-Renault, and Abdelhamid Errachid. "Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses." Chemosensors 9, no. 1 (January 10, 2021): 13. http://dx.doi.org/10.3390/chemosensors9010013.
Full textSarkar, Bidushi, Debanjan Das, and Karuna Kar Nanda. "pH-dependent hydrogen evolution using spatially confined ruthenium on hollow N-doped carbon nanocages as a Mott–Schottky catalyst." Journal of Materials Chemistry A 9, no. 24 (2021): 13958–66. http://dx.doi.org/10.1039/d1ta02375f.
Full textLiu, Hu, Xinyang Liu, Weiwei Yang, Mengqi Shen, Shuo Geng, Chao Yu, Bo Shen, and Yongsheng Yu. "Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott–Schottky heterojunction." Journal of Materials Chemistry A 7, no. 5 (2019): 2022–26. http://dx.doi.org/10.1039/c8ta11172c.
Full textHarada, T., S. Ito, and A. Tsukazaki. "Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation." Science Advances 5, no. 10 (October 2019): eaax5733. http://dx.doi.org/10.1126/sciadv.aax5733.
Full textZhang, Cong Hui, Wei Song, Yao Mian Wang, and Gui Zhi Xiao. "Effect of Surface Strengthening on Corrosion Property of Ti-6Al-4V in 3.5% NaCl." Applied Mechanics and Materials 853 (September 2016): 473–77. http://dx.doi.org/10.4028/www.scientific.net/amm.853.473.
Full textLi, Zhen, Candy C. Mercado, Mengjin Yang, Ethan Palay, and Kai Zhu. "Electrochemical impedance analysis of perovskite–electrolyte interfaces." Chemical Communications 53, no. 16 (2017): 2467–70. http://dx.doi.org/10.1039/c6cc10315d.
Full textHuang, Y., S. Aharon, A. Rolland, L. Pedesseau, O. Durand, L. Etgar, and J. Even. "Influence of Schottky contact on the C-V and J-V characteristics of HTM-free perovskite solar cells." EPJ Photovoltaics 8 (2017): 85501. http://dx.doi.org/10.1051/epjpv/2017001.
Full textSurdi, Harshad, Trevor Thornton, Robert J. Nemanich, and Stephen M. Goodnick. "Space charge limited corrections to the power figure of merit for diamond." Applied Physics Letters 120, no. 22 (May 30, 2022): 223503. http://dx.doi.org/10.1063/5.0087059.
Full textDécima, Santiago, Eliseo Narciso Díaz, Ana Silvina Fuentes, and Francisco Ángel Filippin. "Propiedades semiconductoras del óxido de Ti sobre sustratos vidrio/Ti y chapa de Ti en contacto con una solución de 0,5 M de HClO4." Revista Tecnología y Ciencia, no. 45 (November 11, 2022): 14–30. http://dx.doi.org/10.33414/rtyc.45.14-30.2022.
Full textSivula, Kevin. "Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed." ACS Energy Letters 6, no. 7 (July 9, 2021): 2549–51. http://dx.doi.org/10.1021/acsenergylett.1c01245.
Full textWang, Yuankun, Ruifang Zhang, Zehui Sun, Hu Wu, Shiyao Lu, Jianan Wang, Wei Yu, Jiamei Liu, Guoxin Gao, and Shujiang Ding. "Spontaneously Formed Mott‐Schottky Electrocatalyst for Lithium‐Sulfur Batteries." Advanced Materials Interfaces 7, no. 22 (September 28, 2020): 1902092. http://dx.doi.org/10.1002/admi.201902092.
Full textFernández-Hevia, D., J. de Frutos, A. C. Caballero, and J. F. Fernández. "Mott–Schottky behavior of strongly pinned double Schottky barriers and characterization of ceramic varistors." Journal of Applied Physics 92, no. 5 (September 2002): 2890–98. http://dx.doi.org/10.1063/1.1498968.
Full textMitra, Sanchali, and Santanu Mahapatra. "Schottky–Mott limit in graphene inserted 2D semiconductor–metal interfaces." Journal of Applied Physics 132, no. 14 (October 14, 2022): 145301. http://dx.doi.org/10.1063/5.0106620.
Full textVongsilathai, Songkran, Anchaleeporn Waritswat Lothongkum, and Gobboon Lothongkum. "Corrosion behavior of a new 25Cr-3Ni-7Mn-0.66 N duplex stainless steel in artificial seawater." Materials Testing 63, no. 6 (June 1, 2021): 505–11. http://dx.doi.org/10.1515/mt-2020-0086.
Full textFLORES, F. "ALKALI-ATOM ADSORPTION ON SEMICONDUCTOR SURFACES: METALLIZATION AND SCHOTTKY-BARRIER FORMATION." Surface Review and Letters 02, no. 04 (August 1995): 513–37. http://dx.doi.org/10.1142/s0218625x95000480.
Full textZuraev, A. V., Y. V. Grigoriev, C. M. Verbilo, L. S. Ivashkevich, A. S. Lyakhov, and O. A. Ivashkevich. "PalladiumPolymer Nanocomposite: An Efficient Catalyst for Green Suzuki–Miyaura Cross-Coupling and Mott-Schottky Nitrobenzene Reduction Processes." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 55, no. 2 (June 29, 2019): 196–204. http://dx.doi.org/10.29235/1561-8331-2019-55-2-196-204.
Full textLu, Changzhi, and S. Noor Mohammad. "Validity/invalidity of Schottky-Mott rules for Schottky contacts to III-V nitride semiconductor heterostructures." Applied Physics Letters 89, no. 16 (October 16, 2006): 162111. http://dx.doi.org/10.1063/1.2358956.
Full textHan, Ji Sheng, Philip Tanner, Sima Dimitrijev, Qu Shuang, Yan Shen, and Xian Gang Xu. "The Impact of the Surface Treatments on the Properties of Gan/3C-SiC/Si Based Schottky Barrier Diodes." Materials Science Forum 740-742 (January 2013): 1111–14. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.1111.
Full textvan de Krol, R., A. Goossens, and J. Schoonman. "Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2." Journal of The Electrochemical Society 144, no. 5 (May 1, 1997): 1723–27. http://dx.doi.org/10.1149/1.1837668.
Full textKirchartz, Thomas, Wei Gong, Steven A. Hawks, Tiziano Agostinelli, Roderick C. I. MacKenzie, Yang Yang, and Jenny Nelson. "Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells." Journal of Physical Chemistry C 116, no. 14 (March 26, 2012): 7672–80. http://dx.doi.org/10.1021/jp300397f.
Full textHarrington, Scott P., and Thomas M. Devine. "Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests." Journal of The Electrochemical Society 155, no. 8 (2008): C381. http://dx.doi.org/10.1149/1.2929819.
Full textBondarenko, Alexander S., and Genady A. Ragoisha. "Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy." Journal of Solid State Electrochemistry 9, no. 12 (July 12, 2005): 845–49. http://dx.doi.org/10.1007/s10008-005-0025-7.
Full textLabed, Madani, Nouredine Sengouga, and You Seung Rim. "Control of Ni/β-Ga2O3 Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer." Nanomaterials 12, no. 5 (March 1, 2022): 827. http://dx.doi.org/10.3390/nano12050827.
Full textSchipani, F., C. M. Aldao, and M. A. Ponce. "Inadequacy of the Mott–Schottky equation in strongly pinned double Schottky barriers with no deep donors." Journal of Physics D: Applied Physics 45, no. 49 (November 9, 2012): 495302. http://dx.doi.org/10.1088/0022-3727/45/49/495302.
Full textShabalina, Anastasiia V., Ekaterina Y. Gotovtseva, Yulia A. Belik, Sergey M. Kuzmin, Tamara S. Kharlamova, Sergei A. Kulinich, Valery A. Svetlichnyi, and Olga V. Vodyankina. "Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach." Materials 15, no. 12 (June 9, 2022): 4099. http://dx.doi.org/10.3390/ma15124099.
Full textLeón, J., S. Pletincx, H. Terryn, B. Özkaya, E. García-Lecina, and J. M. Vega. "Unravelling the Fe Effect on the Corrosion of Chromium Coatings: Chemical Composition and Semiconducting Properties." Journal of The Electrochemical Society 168, no. 12 (December 1, 2021): 121501. http://dx.doi.org/10.1149/1945-7111/ac3ac0.
Full textLyons, LE, and TL Young. "On the Flat-Band Potential and the Frequency Dispersion of Capacitance and Its Removal in an Normal-Cadmium Telluride in Alkaline Selenide, Polyselenide Photoelectrochemical Cell." Australian Journal of Chemistry 39, no. 2 (1986): 347. http://dx.doi.org/10.1071/ch9860347.
Full textAlim, Mohammad A. "An analysis of the Mott‐Schottky behavior in ZnO‐Bi2O3based varistors." Journal of Applied Physics 78, no. 7 (October 1995): 4776–79. http://dx.doi.org/10.1063/1.359824.
Full text