Journal articles on the topic 'Mouse xenograft models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mouse xenograft models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Yanmei, Sau Har Lee, Cheng Wang, Yunhe Gao, Jiyang Li, and Wei Xu. "Establishing metastatic patient-derived xenograft model for colorectal cancer." Japanese Journal of Clinical Oncology 50, no. 10 (2020): 1108–16. http://dx.doi.org/10.1093/jjco/hyaa089.
Full textSari, Gulce, Gertine W. van Oord, Martijn D. B. van de Garde, Jolanda J. C. Voermans, Andre Boonstra, and Thomas Vanwolleghem. "Sexual Dimorphism in Hepatocyte Xenograft Models." Cell Transplantation 30 (January 1, 2021): 096368972110061. http://dx.doi.org/10.1177/09636897211006132.
Full textRichmond, A., and Y. Su. "Mouse xenograft models vs GEM models for human cancer therapeutics." Disease Models and Mechanisms 1, no. 2-3 (2008): 78–82. http://dx.doi.org/10.1242/dmm.000976.
Full textGoyama, Susumu, Mark Wunderlich, and James C. Mulloy. "Xenograft models for normal and malignant stem cells." Blood 125, no. 17 (2015): 2630–40. http://dx.doi.org/10.1182/blood-2014-11-570218.
Full textGuihard, Soizic, Pauline Peyrouze, and Meyling H. Cheok. "Pharmacogenomic considerations of xenograft mouse models of acute leukemia." Pharmacogenomics 13, no. 15 (2012): 1759–72. http://dx.doi.org/10.2217/pgs.12.158.
Full textMorton, J. Jason, Gregory Bird, Yosef Refaeli, and Antonio Jimeno. "Humanized Mouse Xenograft Models: Narrowing the Tumor–Microenvironment Gap." Cancer Research 76, no. 21 (2016): 6153–58. http://dx.doi.org/10.1158/0008-5472.can-16-1260.
Full textAparicio, Samuel, Manuel Hidalgo, and Andrew L. Kung. "Examining the utility of patient-derived xenograft mouse models." Nature Reviews Cancer 15, no. 5 (2015): 311–16. http://dx.doi.org/10.1038/nrc3944.
Full textBoetto, Julien, Matthieu Peyre, and Michel Kalamarides. "Mouse Models in Meningioma Research: A Systematic Review." Cancers 13, no. 15 (2021): 3712. http://dx.doi.org/10.3390/cancers13153712.
Full textGamble, John T., Daniel J. Elson, Juliet A. Greenwood, Robyn L. Tanguay, and Siva K. Kolluri. "The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics." Biology 10, no. 4 (2021): 252. http://dx.doi.org/10.3390/biology10040252.
Full textBobbs, Alexander S., Jennifer M. Cole, and Karen D. Cowden Dahl. "Emerging and Evolving Ovarian Cancer Animal Models." Cancer Growth and Metastasis 8s1 (January 2015): CGM.S21221. http://dx.doi.org/10.4137/cgm.s21221.
Full textShen, Yen Ting, Rashi Asthana, Casper Peeters, Christine Allen, Carlo DeAngelis, and Micheline Piquette-Miller. "Potential Limitations of Bioluminescent Xenograft Mouse Models: A Systematic Review." Journal of Pharmacy & Pharmaceutical Sciences 23 (May 13, 2020): 177–99. http://dx.doi.org/10.18433/jpps30870.
Full textXie, M., and C. He. "Antitumor Activity of Foretinib in Breast Cancer Xenograft Mouse Models." Annals of Oncology 24 (May 2013): iii47. http://dx.doi.org/10.1093/annonc/mdt088.1.
Full textDAI, LEI, CAIDE LU, XI YU, LONG-JUN DAI, and JEFF X. ZHOU. "Construction of orthotopic xenograft mouse models for human pancreatic cancer." Experimental and Therapeutic Medicine 10, no. 3 (2015): 1033–38. http://dx.doi.org/10.3892/etm.2015.2642.
Full textvan Weerden, Wytske M., and Johannes C. Romijn. "Use of nude mouse xenograft models in prostate cancer research." Prostate 43, no. 4 (2000): 263–71. http://dx.doi.org/10.1002/1097-0045(20000601)43:4<263::aid-pros5>3.0.co;2-i.
Full textFutami, Kazunobu, Emi Kumagai, Hiroshi Makino, et al. "Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models." Cancer Science 99, no. 6 (2008): 1227–36. http://dx.doi.org/10.1111/j.1349-7006.2008.00794.x.
Full textHicks, William H., Cylaina E. Bird, Jeffrey I. Traylor, et al. "Contemporary Mouse Models in Glioma Research." Cells 10, no. 3 (2021): 712. http://dx.doi.org/10.3390/cells10030712.
Full textZhang, Huiyuan, Lin Qi, Yuchen Du, et al. "Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma." Cancers 12, no. 6 (2020): 1478. http://dx.doi.org/10.3390/cancers12061478.
Full textPimentel, Muriel M. L., Fernanda A. Santos, Ana C. G. Teixeira, et al. "Biochemical, thermographic, and follicular responses of murine models of hormone-treated bovine ovarian renal capsule xenografts." Pesquisa Veterinária Brasileira 37, no. 5 (2017): 425–31. http://dx.doi.org/10.1590/s0100-736x2017000500001.
Full textMurayama, Takahiko, and Noriko Gotoh. "Patient-Derived Xenograft Models of Breast Cancer and Their Application." Cells 8, no. 6 (2019): 621. http://dx.doi.org/10.3390/cells8060621.
Full textInkoom, Andriana, Nkafu Ndemazie, Kevin Affram, et al. "Enhancing efficacy of gemcitabine in pancreatic patient-derived xenograft mouse models." International Journal of Pharmaceutics: X 2 (December 2020): 100056. http://dx.doi.org/10.1016/j.ijpx.2020.100056.
Full textRea, Domenica, Vitale del Vecchio, Giuseppe Palma, et al. "Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX." BioMed Research International 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9750795.
Full textPark, Jun Won, Hyejin Um, Hanna Yang, Joo Young Cha, Kyoung-June Lee та Hark K. Kim. "CWP232291, a Wnt/β-catenin inhibitor, to suppress the growth and development of gastrointestinal cancers." Journal of Clinical Oncology 35, № 15_suppl (2017): e15534-e15534. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e15534.
Full textDavies, Jason M., Aaron E. Robinson, Cynthia Cowdrey, et al. "Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma." Journal of Neurosurgery 120, no. 2 (2014): 331–36. http://dx.doi.org/10.3171/2013.10.jns13598.
Full textIwami, Kenichiro, Hiroyuki Momota, Atsushi Natsume, Sayano Kinjo, Tetsuya Nagatani, and Toshihiko Wakabayashi. "A novel method of intracranial injection via the postglenoid foramen for brain tumor mouse models." Journal of Neurosurgery 116, no. 3 (2012): 630–35. http://dx.doi.org/10.3171/2011.10.jns11852.
Full textLiaw, Tracy T. Y. E., Patricia P. A. Burke, X. Chen, Theresa T. M. LaVallee, Richard Lock, and Maria Kavallaris. "ENMD-1198 in Combination with Vincristine Shows Synergistic Activity in Leukemia Cells and Prolonged Mouse Survival in Human Leukemia Xenografts." Blood 110, no. 11 (2007): 859. http://dx.doi.org/10.1182/blood.v110.11.859.859.
Full textYe, Shiming, Melvin I. Fox, Nicole A. Belmar, et al. "Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells." Journal of Immunology Research 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/5737159.
Full textLIN, KEVIN Y., ALEXANDER F. BAGLEY, ALEXIA Y. ZHANG, DANIEL L. KARL, SAM S. YOON, and SANGEETA N. BHATIA. "GOLD NANOROD PHOTOTHERMAL THERAPY IN A GENETICALLY ENGINEERED MOUSE MODEL OF SOFT TISSUE SARCOMA." Nano LIFE 01, no. 03n04 (2010): 277–87. http://dx.doi.org/10.1142/s1793984410000262.
Full textYamauchi, Takuji, Katsuto Takenaka, Shingo Urata, et al. "Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment." Blood 121, no. 8 (2013): 1316–25. http://dx.doi.org/10.1182/blood-2012-06-440354.
Full textLi, Jianneng, Michael Berk, Mohammad Alyamani, et al. "Hexose-6-phosphate dehydrogenase blockade reverses prostate cancer drug resistance in xenograft models by glucocorticoid inactivation." Science Translational Medicine 13, no. 595 (2021): eabe8226. http://dx.doi.org/10.1126/scitranslmed.abe8226.
Full textÖzdemir, B., C. Secondini, R. Schwaninger, et al. "279 STROMA REACTION IN MOUSE XENOGRAFT MODELS OF PROSTATE CANCER BONE METASTASIS." European Urology Supplements 9, no. 2 (2010): 115. http://dx.doi.org/10.1016/s1569-9056(10)60278-3.
Full textQi, Lin, Patricia Baxter, Mari Kogiso, et al. "PCM-05AUTOPSY-DERIVED ORTHOTOPIC XENOGRAFT MOUSE MODELS OF TERMINAL PEDIATRIC BRAIN TUMORS." Neuro-Oncology 18, suppl 3 (2016): iii140.1—iii140. http://dx.doi.org/10.1093/neuonc/now080.05.
Full textYada, Erica, Satoshi Wada, Shintaro Yoshida, and Tetsuro Sasada. "Use of patient-derived xenograft mouse models in cancer research and treatment." Future Science OA 4, no. 3 (2018): FSO271. http://dx.doi.org/10.4155/fsoa-2017-0136.
Full textWilson, Thomas, Giacomo Pirovano, Gu Xiao, et al. "PARP-Targeted Auger Therapy in p53 Mutant Colon Cancer Xenograft Mouse Models." Molecular Pharmaceutics 18, no. 9 (2021): 3418–28. http://dx.doi.org/10.1021/acs.molpharmaceut.1c00323.
Full textDourado, Keina M. C., June Baik, Vanessa K. P. Oliveira, et al. "Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models." Blood 129, no. 18 (2017): 2526–36. http://dx.doi.org/10.1182/blood-2017-01-763581.
Full textKato, Yukinari, Tomokazu Ohishi, Manabu Kawada, et al. "The mouse–canine chimeric anti-dog podoplanin antibody P38B exerts antitumor activity in mouse xenograft models." Biochemistry and Biophysics Reports 17 (March 2019): 23–26. http://dx.doi.org/10.1016/j.bbrep.2018.11.005.
Full textWu, Wei, Su-Ni Tang, Yong Zhang, et al. "Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of Angelica gigas Pyranocoumarins, in Mouse Models." American Journal of Chinese Medicine 45, no. 08 (2017): 1773–92. http://dx.doi.org/10.1142/s0192415x17500963.
Full textAntonelli, Antonella, Willy A. Noort, Jenny Jaques, et al. "Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches." Blood 128, no. 25 (2016): 2949–59. http://dx.doi.org/10.1182/blood-2016-05-719021.
Full textYin, Lei, Zhenglin Yao, Yue Wang, Julius Huang, Michelle Mazuranic, and Ang Yin. "Preclinical evaluation of novel CDK4/6 inhibitor GLR2007 in glioblastoma models." Journal of Clinical Oncology 39, no. 15_suppl (2021): e14023-e14023. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e14023.
Full textCho, Kyungjoo, Simon Weonsang Ro, Sang Hyun Seo, et al. "Genetically Engineered Mouse Models for Liver Cancer." Cancers 12, no. 1 (2019): 14. http://dx.doi.org/10.3390/cancers12010014.
Full textHoseini, Sayed Shahabuddin, Madelyn Espinosa-Cotton, Hong-fen Guo, and Nai-Kong V. Cheung. "Overcoming leukemia heterogeneity by combining T cell engaging bispecific antibodies." Journal for ImmunoTherapy of Cancer 8, no. 2 (2020): e001626. http://dx.doi.org/10.1136/jitc-2020-001626.
Full textKnoblaugh, Sue E., and Lauren E. Himmel. "Keeping Score: Semiquantitative and Quantitative Scoring Approaches to Genetically Engineered and Xenograft Mouse Models of Cancer." Veterinary Pathology 56, no. 1 (2018): 24–32. http://dx.doi.org/10.1177/0300985818808526.
Full textTejeda, M., D. Gaál, I. Szűcs, and A. Telekes. "Avemar inhibits the growth of mouse and human xenograft mammary carcinomas comparable to endocrine treatments." Journal of Clinical Oncology 25, no. 18_suppl (2007): 21132. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.21132.
Full textLicha, David, Silvia Vidali, Sepideh Aminzadeh-Gohari, et al. "Untargeted Metabolomics Reveals Molecular Effects of Ketogenic Diet on Healthy and Tumor Xenograft Mouse Models." International Journal of Molecular Sciences 20, no. 16 (2019): 3873. http://dx.doi.org/10.3390/ijms20163873.
Full textSchmid, T. E., O. Zlobinskaya, D. Michalski, et al. "80 SERUM HSP70 – A SOLUBLE, TUMOR-SPECIFIC MARKER IN XENOGRAFT TUMOR MOUSE MODELS." Radiotherapy and Oncology 102 (March 2012): S28—S29. http://dx.doi.org/10.1016/s0167-8140(12)70057-9.
Full textTeichman, Jennifer, Lorin Dodbiba, Henry Thai, et al. "Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma." PLOS ONE 13, no. 5 (2018): e0194809. http://dx.doi.org/10.1371/journal.pone.0194809.
Full textMeyer, Lüder Hinrich, and Klaus-Michael Debatin. "Diversity of Human Leukemia Xenograft Mouse Models: Implications for Disease Biology: Figure 1." Cancer Research 71, no. 23 (2011): 7141–44. http://dx.doi.org/10.1158/0008-5472.can-11-1732.
Full textMichelucci, A., A. Golebiewska, A. Oudin, A. Schuster, R. Balling, and S. P. Niclou. "P04.01 Characterization of microglia/macrophage phenotypes in glioma patient-derived xenograft mouse models." Neuro-Oncology 18, suppl_4 (2016): iv23. http://dx.doi.org/10.1093/neuonc/now188.079.
Full textZhang, Tianwei, Lin Zhang, Shuqiong Fan, et al. "Patient-Derived Gastric Carcinoma Xenograft Mouse Models Faithfully Represent Human Tumor Molecular Diversity." PLOS ONE 10, no. 7 (2015): e0134493. http://dx.doi.org/10.1371/journal.pone.0134493.
Full textYalcin, M., E. Dyskin, L. Lansing, et al. "Tetraiodothyroacetic Acid (Tetrac) and Nanoparticulate Tetrac Arrest Growth of Medullary Carcinoma of the Thyroid." Journal of Clinical Endocrinology & Metabolism 95, no. 4 (2010): 1972–80. http://dx.doi.org/10.1210/jc.2009-1926.
Full textMa, Hayley S., Sarah M. Greenblatt, Courtney M. Shirley, et al. "All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo." Blood 127, no. 23 (2016): 2867–78. http://dx.doi.org/10.1182/blood-2015-05-646786.
Full text