Dissertations / Theses on the topic 'Mouvement brownien fractionnaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mouvement brownien fractionnaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tudor, Ciprian A. "Calcul stochastique anticipant et mouvement brownien fractionnaire." La Rochelle, 2002. http://www.theses.fr/2002LAROS089.
Full textThe main object of this thesis is the anticipating stochastic calculus with respect to the Wiener process and with respect to the fractional Brownian motion. The first chapter of this work contains a generalization of the Skorohod stochasic calculus for more general integrators without any martingale property. In the second part we study the existence and the properties of the local time of the fractional Brownian motion. Next we considered the problem of the weak convergence to the fractional Brownian motion. The last part of the thesis contains the study of a class of stochastic evolution equations with a fractional noise
Savy, Nicolas. "Mouvement Brownien Fractionnaire, applications aux télécommunications. Calcul Stochastique relativement à des processus fractionnaires." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00003407.
Full textBaraka, Driss. "Propriétés fines des trajectoires du mouvement brownien fractionnaire /." [S.l.] : [s.n.], 2008. http://library.epfl.ch/theses/?nr=4252.
Full textDarses, Sébastien. "Dynamique stochastique et contribution à l'étude du mouvement brownien fractionnaire." Besançon, 2006. http://www.theses.fr/2006BESA2060.
Full textDrouilhet, Rémy. "Dérivée de mouvement brownien fractionnaire et estimation de densité spectrale." Pau, 1993. http://www.theses.fr/1993PAUU3024.
Full textCai, Chunhao. "Analyse statistique de quelques modèles de processus de type fractionnaire." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1030/document.
Full textThis thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime
Zeineddine, Raghid. "Sur des nouvelles formules d'Itô en loi." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0179/document.
Full textFractional Brownian motion in Brownian time Z may serve as a model for the motion of a single gas particle constrained to evolve inside a crack. In this PhD thesis, written under the supervision of Ivan Nourdin, we prove Itô's type formulas for Z. To achieve this goal, our main tools are the Malliavin calculus, the stochastic calculus and the use of limit theorems. One of the specificity of the formula we have obtained is that they hold in law, with creation of a new alea. This manuscript consists in an introductory chapter, followed by three other chapters, each one corresponding to different results obtained along the preparation of this thesis and written is the form of research papers. More precisely: 1) In a first paper, we introduce the central process of this thesis, namely the fractional Brownian motion in Brownian time Z. Then, we study the fluctuations of its power variations of order p, for any integer p greater than or equal to 1. 2) In a second paper, written jointly with my supervisor Ivan Nourdin, we use the results obtained in 1) to build an Itô's type formula for Z. To do so, we need to extend to our setting an approach originally due to Khoshnevisan and Lewis, consisting in rather working with a random partition of time, instead of the classical uniform deterministic partition. 3) Finally, in a third and last paper, we extend to bi-dimension the one- dimensional formula obtained in 2)
Herbin, Erick. "Processus (multi-)fractionnaires à paramètres multidimensionnels et régularité höldérienne." Paris 11, 2004. http://www.theses.fr/2004PA112170.
Full textThe multifractional brownian motion is a generalization of the well-known fractional brownian motion, where the constant index of self-similarity is substituted with a function. This substitution allows the local regularity to vary along the paths. In a first paper, multiparameter extensions of these processes are studied. For each of one, two kinds of extension are defined: one is isotropic, the other is not. The fractal properties of one-parameter processes are extended: self-similarity and increments stationarity in the fractional case, and the locally asymptotic self-similarity in the multifractional case. The definition and study of a set-indexed fractional brownian motion, is the object of a second paper. Fractal properties are defined for a set-indexed process, and proved for our process. Eventually, behavior along increasing paths are examined: the one-parameter process obtained from projection along flows, is a time-changed classical fbm. In a third paper, we extend the 2-microlocal analysis to the stochastic case of gaussian processes. This allows to predict the regularity of processes obtained by action of integro-differential operators. The almost sure value of the 2-microlocal frontier of the (multi-)fractional brownian motion is computed
Marouby, Matthieu. "Trois études de processus fractionnaires." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/946/.
Full textThe first part is devoted to the simulation of the Local Time Fractional Stable Motion (LTFSM). This process, which was introduced in 2006 by Cohen and Samorodnitsky, is defined as the integration of the local time of a fractional Brownian motion with respect to a random stable measure, the randomness of both objects being defined on two independent probability spaces. Using a series representation method to simulate it, I obtain a control of the approximation. In the second part, I study processes obtained as limits of sums of micropulses, specifically focusing on behavior when "ups" and "downs" of the micropulses are not equal. Then, I generalize the processes obtained to processes with multidimensional indices. Processes obtained in this work vary from standard Brownian motions to multifractional Brownian sheets. Finally, I study a model from physic theory, a field created by charged particles randomly distributed in a hyperplan. The limit process is fractional, centered, Gaussian and in some cases well-known like fractional Brownian motion. Eventually, I study some of its characteristics, such as the number of local minima. This part raises many questions that have yet to be resolved
Delorme, Mathieu. "Processus stochastiques et systèmes désordonnés : autour du mouvement Brownien." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE058/document.
Full textIn this thesis, we study stochastic processes appearing in different areas of statistical physics: Firstly, fractional Brownian motion is a generalization of the well-known Brownian motion to include memory. Memory effects appear for example in complex systems and anomalous diffusion, and are difficult to treat analytically, due to the absence of the Markov property. We develop a perturbative expansion around standard Brownian motion to obtain new results for this case. We focus on observables related to extreme-value statistics, with links to mathematical objects: Levy’s arcsine laws and Pickands’ constant. Secondly, the model of elastic interfaces in disordered media is investigated. We consider the case of a Brownian random disorder force. We study avalanches, i.e. the response of the system to a kick, for which several distributions of observables are calculated analytically. To do so, the initial stochastic equation is solved using a deterministic non-linear instanton equation. Avalanche observables are characterized by power-law distributions at small-scale with universal exponents, for which we give new results
Zeineddine, Raghid. "Sur des nouvelles formules d'Itô en loi." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0179.
Full textFractional Brownian motion in Brownian time Z may serve as a model for the motion of a single gas particle constrained to evolve inside a crack. In this PhD thesis, written under the supervision of Ivan Nourdin, we prove Itô's type formulas for Z. To achieve this goal, our main tools are the Malliavin calculus, the stochastic calculus and the use of limit theorems. One of the specificity of the formula we have obtained is that they hold in law, with creation of a new alea. This manuscript consists in an introductory chapter, followed by three other chapters, each one corresponding to different results obtained along the preparation of this thesis and written is the form of research papers. More precisely: 1) In a first paper, we introduce the central process of this thesis, namely the fractional Brownian motion in Brownian time Z. Then, we study the fluctuations of its power variations of order p, for any integer p greater than or equal to 1. 2) In a second paper, written jointly with my supervisor Ivan Nourdin, we use the results obtained in 1) to build an Itô's type formula for Z. To do so, we need to extend to our setting an approach originally due to Khoshnevisan and Lewis, consisting in rather working with a random partition of time, instead of the classical uniform deterministic partition. 3) Finally, in a third and last paper, we extend to bi-dimension the one- dimensional formula obtained in 2)
Nourdin, Ivan. "Calcul stochastique généralisé et applications au mouvement brownien fractionnaire : Estimation non paramétrique de la volatilité et test d'adéquation." Phd thesis, Université Henri Poincaré - Nancy I, 2004. http://tel.archives-ouvertes.fr/tel-00008600.
Full textVenet, Nil. "Sur l'existence de champs browniens fractionnaires indexés par des variétés." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30377/document.
Full textThe aim of the thesis is the study of the existence of fractional Brownian fields indexed by Riemannian manifolds. Those fields inherit key properties of the classical fractional Brownian motion (sample paths with self-similarity of adjustable parameter H, stationary increments), while allowing to consider applications with data indexed by a space which can be for example curved or with a hole. The existence of those fields is only insured when the quantity 2H is inferior or equal to the fractional index of the manifold, which is known only in a few cases. In a first part we give a necessary condition for the fractional Brownian field to exist. In the case of the Brownian field (corresponding to H=1/2) indexed by a manifold with minimal closed geodesics this condition happens to be very restrictive. We give several nonexistence results in this situation. In particular we show that there exists no Brownian field indexed by a nonsimply connected compact manifold. Our necessary condition also gives a short proof of an expected result: we prove the nondegeneracy of fractional Brownian fields indexed by the real hyperbolic spaces. In a second part we show that the fractional index of the cylinder is null, which gives a totally degenerate case. We deduce from this result that the fractional index of a metric space is noncontinuous with respect to the Gromov-Hausdorff convergence. We generalise this result about the cylinder to a Cartesian product with a closed minimal geodesic. Furthermore we give a bound of the fractional index of surfaces asymptotically close to the cylinder in the neighbourhood of a closed minimal geodesic
Perpète, Nicolas. "Construction et étude de quelques processus multifractals." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10191/document.
Full textSince their emergence in the 80's in the areas of turbulence and of strange attractors, multifractals have gained popularity. They appear now in finance, geophysics, study of network traffic and in many other areas of applied sciences. This development required adapted theoretical models. Bacry and Muzy's Multifractal Random Measure is one of these models. Thanks to its generality, its flexibility and to its relative simplicity, it became central in the domain of multifractals over the past ten years.In this PhD thesis, two families of multifractal processes are proposed. Their construction is based on the works of Schmitt and co-authors and of those of Bacry and Muzy. After the introduction (chapter 1), we use in chapter 2 alpha-stable moving averages to build multifractal processes; whereas chapter 3 is devoted to the construction of Multifractal Fractional Random Walks with Hurst index 0
Hadouni, Doha. "Détection de rupture hors ligne sur des processus dépendants." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC098.
Full textZintout, Rola. "Sur différents problèmes de convergence en loi dans l'espace de Wiener." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0124/document.
Full textThe thesis deals with the probabilistic approximation in a fractional context, which means in models connected in one way or another to the fractional Brownian motion. The common denominator of our results is that they offer general conditions under which a random variable having a complicated law converges in law to a random variable with easier law. And when this was possible, we have also associated convergence rates. The tools are linked to a recent research field, called Malliavin-Stein approach. In 2005, Nualart and Peccati have discovered a surprising limit theorem (known as the fourth moment theorem) for series of multiple Wiener-Itô integrals: for such series and after renormalization, convergence in distribution to standard Gaussian happens to be equivalent to the convergence of the fourth moment only. Shortly after the publication of this nice result, Peccati and Tudor have extended it to the multivariate case. And since many improvements and new developments have appeared in the literature, including an article by Nourdin and Peccati which for the first time combined the method of Stein with the Malliavin calculus, providing a framework in which it is now possible to associate a rate of convergence to the fourth moment theorem. We focus in this thesis on the total variation distance between the laws of two double Wiener-Itô integrals. We improve a previous result of Davydov and Martinova. Then we study the asymptotic behavior of a two-dimensional cross-variation process that has the form of a Young integral. Finally, a multivariate convergence is established of some Volterra processes built from the fractional Brownian motion
Carvalho, Odile. "Exploitation de la statistique du champ de speckle pour l'aide au diagnostic du syndrome cutané d'irradiation aigüe : confrontation des résultats biophysiques et biologiques." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0087.
Full textOverexposure to ionizing radiation is now a growing concern of clinicians. In case of external exposure, the skin is the first tissue exposed. However, there are no tools that can diagnose pathological tissue. The objective of this work is to demonstrate the possibility of using a non-invasive method for in vivo diagnosis and prognosis of acute cutaneous radiation syndrome. The first part of this work concerns the choice of the investigation method. Interaction of coherent light and scattering medium creates a phenomenon called speckle. A classical frequential analysis on the spekle field is supplemented by a stochastic approach to extract parameters characterizing speckle patterns. In the second part, the experimental setup has been tested in order to understand the parameters behavior in function of some physical properties of synthetic scattering media. The study revealed that some of the speckle parameters were more influenced by big scatterers (Mie) while others were by the smallest (Rayleigh). The third part concerns the in vivo application of this method on acute cutaneous radiation syndrome in pigs. Analysis of the results gained during the monitoring of several animals showeb the ability to discriminate between irradiated and healthy zones several weeks before apparition of firsts clinical signs. Finally, in order to understand the results on the radiological burn, we have confronted all physical results and those obtained by histological analyses
Deya, Aurélien. "Etude de systèmes différentiels fractionnaires." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10070/document.
Full textThis PhD thesis work is devoted to the study of some finite and infinite-dimensional differential systems driven by Hölder processes. The general strategy consists in adapting the rough paths methods, originally designed to handle standard systems only. More specifically, we consider the case of the Volterra systems, as well as the case of heat equations. This work also focuses on the spin-offs of the rough paths approach as far as stochastic systems are concerned, with a special attention to the fractional Brownian motion. Finally, a detailed analysis of several approximation schemes for the solutions is provided
Bégyn, Arnaud. "Generalized quadratic variations of gaussian processes : limits theorems and applications to fractional processes." Toulouse 3, 2006. http://www.theses.fr/2006TOU30058.
Full textIf X is a fractional process, there exists a parameter H(X), which may be a vector or a function. This parameter is related to the properties of self-similarity of X and to the regularity of its trajectories. Therefore it is a relevant quantity which must be taken into account in a statistical study. The purpose of our PhD thesis is to yield conditions on a Gaussian processes X, which are satisfied in the case of fractional processes, and which enable to find a normalization returning its second order quadratic variation almost surely convergent and asymptotically normal. As in the case of the fractional Brownian motion, our work enables to construct a “good” estimation of some parameters of the considered fractional processes. For that we consider the usual statistic associated to the second order quadratic variation
Nourdin, Ivan. "Contributions à l'étude des processus gaussiens." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00287738.
Full textLe chapitre 2 présente des théorèmes limites abstraits (principalement valables pour une suite (F_n) d'intégrales multiples par rapport à un processus gaussien isonormal X) sous des hypothèses concernant la dérivée de Malliavin de F_n. Nous y exposons notamment une nouvelle méthode donnant (de manière étonnament simple) une estimation de type Berry-Esséen quand la suite (F_n) converge en loi vers une gaussienne. En particulier, cette méthode permet d'estimer la vitesse de convergence dans le classique théorème de Breuer et Major. Notons que les outils présentés dans ce chapitre sont la base des résultats obtenus dans le premier chapitre.
Le chapitre 3 est consacré à mes travaux relatifs à la théorie de l'intégration contre des ``chemins rugueux'' (rough paths en anglais). Tout d'abord, nous faisons un lien avec l'intégration par régularisation à la Russo-Vallois. Ensuite, nous étudions un problème de contrôle optimal. Enfin, nous exploitons l'intégration algébrique récemment introduite par Gubinelli pour calculer le développement asymptotique de la ``loi'' de la solution d'une équation différentielle stochastique dirigée par un brownien fractionnaire d'une part, et pour étudier les équations différentielles avec retard dirigées par un chemin rugueux d'autre part.
Enfin, dans le chapitre 4, nous définissons et étudions un nouvel objet, appelé ``dérivée stochastique''. Puis, nous illustrons certains phénomènes généraux en appliquant cette théorie au cas du mouvement brownien fractionnaire avec dérive.
Zintout, Rola. "Sur différents problèmes de convergence en loi dans l'espace de Wiener." Electronic Thesis or Diss., Université de Lorraine, 2015. http://www.theses.fr/2015LORR0124.
Full textThe thesis deals with the probabilistic approximation in a fractional context, which means in models connected in one way or another to the fractional Brownian motion. The common denominator of our results is that they offer general conditions under which a random variable having a complicated law converges in law to a random variable with easier law. And when this was possible, we have also associated convergence rates. The tools are linked to a recent research field, called Malliavin-Stein approach. In 2005, Nualart and Peccati have discovered a surprising limit theorem (known as the fourth moment theorem) for series of multiple Wiener-Itô integrals: for such series and after renormalization, convergence in distribution to standard Gaussian happens to be equivalent to the convergence of the fourth moment only. Shortly after the publication of this nice result, Peccati and Tudor have extended it to the multivariate case. And since many improvements and new developments have appeared in the literature, including an article by Nourdin and Peccati which for the first time combined the method of Stein with the Malliavin calculus, providing a framework in which it is now possible to associate a rate of convergence to the fourth moment theorem. We focus in this thesis on the total variation distance between the laws of two double Wiener-Itô integrals. We improve a previous result of Davydov and Martinova. Then we study the asymptotic behavior of a two-dimensional cross-variation process that has the form of a Young integral. Finally, a multivariate convergence is established of some Volterra processes built from the fractional Brownian motion
Jing, Shuai. "Quelques applications de la théorie d'EDSR : EDDSR fractionnaire et propriétés de régularité des EDP-Intégrales." Phd thesis, Université de Bretagne occidentale - Brest, 2011. http://tel.archives-ouvertes.fr/tel-00904183.
Full textCoeurjolly, Jean-François. "Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires." Phd thesis, Université Joseph Fourier (Grenoble), 2000. http://tel.archives-ouvertes.fr/tel-00006736.
Full textDeya, Aurélien. "Etude de systèmes différentiels fractionnaires." Electronic Thesis or Diss., Nancy 1, 2010. http://www.theses.fr/2010NAN10070.
Full textThis PhD thesis work is devoted to the study of some finite and infinite-dimensional differential systems driven by Hölder processes. The general strategy consists in adapting the rough paths methods, originally designed to handle standard systems only. More specifically, we consider the case of the Volterra systems, as well as the case of heat equations. This work also focuses on the spin-offs of the rough paths approach as far as stochastic systems are concerned, with a special attention to the fractional Brownian motion. Finally, a detailed analysis of several approximation schemes for the solutions is provided
Haress, El Mehdi. "Numerical approximation and long-time behaviour of some singular stochastic (partial) differential equations." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM038.
Full textIn this thesis, we explore the numerical approximation and long-term behavior of certain stochastic equations driven by dissipative and/or distributional drift terms.Firstly, stochastic differential equations (SDEs) with fractional Brownian motion (fBm) and distributional drift are studied. The convergence of a tamed-Euler scheme is quantified. Similar techniques are applied to the stochastic heat equation (SHE) with space-time white noise and a distributional reaction term, and the same results are obtained for a tamed-Euler scheme with finite differences.Secondly, the focus shifts to SDEs with fBm and dissipative drift, establishing, in the long-term regime, the almost-sure regularity of solutions and their ergodic means with respect to time and the Hurst parameter. These results are applied in a statistical context to estimate the parameters of the equations through an approximation of their invariant measures.Finally, we combine dissipative and distributional reaction terms in SHE, presenting preliminary results in the long-term regime, the well-posedness of the equation is proven and the moments of the solution are uniformly bounded over time
Perpète, N. "Construction et étude de quelques processus multifractals." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2013. http://tel.archives-ouvertes.fr/tel-00912273.
Full textVarvenne, Maylis. "Ergodicité des équations différentielles stochastiques fractionnaires et problèmes liés." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30046.
Full textIn this thesis, we focus on three problems related to the ergodicity of stochastic dynamics with memory (in a discrete-time or continuous-time setting) and especially of Stochastic Differential Equations (SDE) driven by fractional Brownian motion. In the first chapter, we study the long-time behavior of a general class of discrete-time stochastic dynamics driven by an ergodic and stationary Gaussian noise. Following the seminal paper written by Hairer (2005) on the ergodicity of fractional SDE (see also Fontbona-Panloup (2017) and Deya-Panloup-Tindel (2019)), we first build a Markovian structure above the dynamics, we show existence and uniqueness of the invariant distribution and then we exhibit some upper-bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise (or more precisely, of the asymptotic behavior of the coefficients appearing in its moving average representation). The second chapter establishes long-time concentration inequalities both for functionals of the whole solution on an interval [0,T] of an additive fractional SDE and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process. The last chapter, which uses the results developed in Chapter 2, is a joint work with Panloup and Tindel which focuses on the parametric estimation of the (non-linear) drift term in an additive fractional SDE. We use a minimum contrast estimation based on the identification of the invariant distribution (for which we build an approximation from discrete-time observations of the SDE). We provide consistency results as well as non-asymptotic estimates of the corresponding quadratic error. Some of our results are illustrating through numerical discussions. We also give some examples for which the identifiability condition related to our estimation procedure (intrinsically linked to the invariant distribution) is fulfilled
Hamonier, Julien. "Analyse par ondelettes du mouvement multifractionnaire stable linéaire." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2012. http://tel.archives-ouvertes.fr/tel-00753510.
Full textRichard, Alexandre. "Régularité locale de certains champs browniens fractionnaires." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0048/document.
Full textIn this thesis, local regularity properties of some multiparameter, set-indexed and eventually L2-indexed random fields are investigated. The goal is to extend standard tools of the theory of stochastic processes, in particular local Hölder regularity, to indexing collection which are not totally ordered.The classic Kolmogorov continuity criterion gives a lower estimate of the Hölder regularityof a stochastic process indexed by a subset of R or RN . Using the lattice structure of the indexing collections in the theory of set-indexed processes of Ivanoff and Merzbach, Kolmogorov’scriterion is extended to this framework. Different increments for set-indexed processes are considered,and several Hölder exponents are defined accordingly. For Gaussian processes, these exponents are, almost surely and uniformly along the sample paths, deterministic and related to the law of the increments of the process. This is applied to the set-indexed fractional Brownian motion, for which the regularity is constant. In order to exhibit a process having a variable regularity,we resorted to structures of Abstract Wiener Spaces, and defined a fractional Brownian field indexed by a product space (0, 1=2]_L2(T,m), based on a family of positive definite kernels kh, h 2 (0, 1=2]. This field encompasses a large class of existing multiparameter fractional Brownian processes, which are exhibited by choosing appropriate metric spaces (T,m). It is proven that the law of the increments of such a field is bounded above by a function of the increments in both parameters of the field. Applying the techniques developed to measure the local Hölder regularity, it is proven that this field can lead to a set-indexed, or L2-indexed, Gaussian process with prescribed local regularity.The last part is devoted to the study of the singularities induced by the multiparameter process defined by the covariance kh on L2([0, 1]_,dx). This process is a natural extension of the fractional Brownian motion and of the Brownian sheet. At the origin 0 of RN+, this multiparameter fractional Brownian motion has a different regularity behaviour. A Chung (or lim inf ) law of the iterated logarithm permits to observe this
Decrouez, Geoffrey. "Génération de signaux multifractals possédant une structure de branchement sous-jacente." Phd thesis, Grenoble INPG, 2009. http://tel.archives-ouvertes.fr/tel-00353827.
Full textLe premier modèle est une généralisation des Systèmes de fonctions Itérés ou IFS, introduits par Hutchinson dans les années 80. Les IFS constituent un moyen simple et efficace pour produire des ensembles et des processus fractals en itérant un nombre fixed d'opérateurs. L'idée est d'autoriser un nombre aléatoire d'opérateurs aléatoires à chaque itération de l'algorithme. Nous donnons des conditions simples et faciles à vérifier sous lesquelles l'IFS admet un point fixe. Quelques propriétés du point fixe sont également étudiées. Le deuxième modèle, que nous appellons Multifractal Embedded Branching Process (MEBP), s'obtient à l'aide d'un changement de temps multifractal d'un processus à invariance d'échelle discrète, le processus EBP Canonique (CEBP). Nous donnons un algorithm efficace de simulation "on-line" de ces processus, permettant de générer X(n + 1) à partir de X(n) en O(log n) opérations. Nous obtenons également un borne supérieure pour le spectre multifractal du changement de temps et confirmons les résultats théoriques à l'aide de simulations. Les mouvements Browniens en temps multifractal sont des cas particuliers des processus MEBP, ce qui suggère une application potentielle des processus MEBP en finance. Enfin, nous proposons d'imiter un mouvement Brownien fractionnaire à l'aide d'un processus MEBP.
Gradinaru, Mihai. "Applications du calcul stochastique à l'étude de certains processus." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011826.
Full textentre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de
certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion,
mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou
d'équations aux dérivées partielles stochastiques.
La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes
suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions,
grandes déviations pour un processus obtenu par perturbation brownienne d'un système
dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique
pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire,
étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique,
étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à
frontière absorbante et enfin, estimation non-paramétrique et construction d'un
test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une
équation différentielle stochastique.
Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique.
On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles
et de l'analyse.
Slaoui, Meryem. "Analyse stochastique et inférence statistique des solutions d’équations stochastiques dirigées par des bruits fractionnaires gaussiens et non gaussiens." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I079.
Full textThis doctoral thesis is devoted to the study of the solutions of stochastic differential equations driven by additive Gaussian and non-Gaussian noises. As a non-Gaussian driving noise, we use the Hermite processes. These processes form a family of self-similar stochastic processes with stationary increments and long memory and they can be expressed as multiple Wiener-Itô integrals. The class of Hermite processes includes the well-known fractional Brownian motion which is the only Gaussian Hermite process, and the Rosenblatt process. In a first chapter, we consider the solution to the linear stochastic heat equation driven by a multiparameter Hermite process of any order and with Hurst multi-index H. We study the existence and establish various properties of its mild solution. We discuss also its probability distribution in the non-Gaussian case. The second part deals with the asymptotic behavior in distribution of solutions to stochastic equations when the Hurst parameter converges to the boundary of its interval of definition. We focus on the case of the Hermite Ornstein-Uhlenbeck process, which is the solution of the Langevin equation driven by the Hermite process, and on the case of the solution to the stochastic heat equation with additive Hermite noise. These results show that the obtained limits cover a large class of probability distributions, from Gaussian laws to distribution of random variables in a Wiener chaos of higher order. In the last chapter, we consider the stochastic wave equation driven by an additive Gaussian noise which behaves as a fractional Brownian motion in time and as a Wiener process in space. We show that the sequence of generalized variations satisfies a Central Limit Theorem and we estimate the rate of convergence via the Stein-Malliavin calculus. The results are applied to construct several consistent estimators of the Hurst index
Coulon, Jérôme. "Mémoire longue, volatilité et gestion de portefeuille." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00657711.
Full textDecrouez, Geoffrey. "Génération de signaux multifractals possédant une structure de branchement sous-jacente." Phd thesis, Grenoble INPG, 2009. http://www.theses.fr/2009INPG0002.
Full textFractal geometry, pioneered by Mandelbrot in the 70s, has been recognized in many areas of science. The novelty of this thesis is the generation of fractal and multifractal processes with underlying construction tree. I study two models in particular. The first one is a generalisation of Iterated Function Systems (IFS), introduced by Hutchinson in the early 80s. IFS are an efficient tool to generate fractal sets and functions, by iterating a given set of operators. The idea here is to allow a random number of random operators at each iteration of the algorithm. We derive simple conditions under which the IFS possesses a fixed point. A few properties of the fixed point are also investigated. The second model, called Multifractal Embedded Branching Process (MEBP), is obtained via a multifractal time change of a discrete self-similar process, the Canonical EBP (CEBP). We give an efficient simulation online algorithm which generates X(n+1) from X(n) in O(log n) steps. We also derive an upper bound of the multifractal spectrum of the time change and we confirm the theoretical results with simulations. Subordinated Brownian motions are particular cases of MEBP processes, which suggests a potential application of MEBP in finance. Finally, we propose to imitate a fractional Brownian motion with an MEBP
Touibi, Rim. "Sur le comportement qualitatif des solutions de certaines équations aux dérivées partielles stochastiques de type parabolique." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0263/document.
Full textThis thesis is concerned with stochastic partial differential equations of parabolic type. In the first part we prove new results regarding the existence and the uniqueness of global and local variational solutions to a Neumann initial-boundary value problem for a class of non-autonomous stochastic parabolic partial differential equations. The equations we consider are defined on unbounded open domains in Euclidean space satisfying certain geometric conditions, and are driven by a multiplicative noise derived from an infinite-dimensional fractional Wiener process characterized by a sequence of Hurst parameters H = (Hi) i ∈ N+ ⊂ (1/2,1). These parameters are in fact subject to further constraints that are intimately tied up with the nature of the nonlinearity in the stochastic term of the equations, and with the choice of the functional spaces in which the problem at hand is well-posed. Our method of proof rests on compactness arguments in an essential way. The second part is devoted to the study of the blowup behavior of solutions to semilinear stochastic partial differential equations with Dirichlet boundary conditions driven by a class of differential operators including (not necessarily symmetric) Lévy processes and diffusion processes, and perturbed by a mixture of Brownian and fractional Brownian motions. Our aim is to understand the influence of the stochastic part and that of the differential operator on the blowup behavior of the solutions. In particular we derive explicit expressions for an upper and a lower bound of the blowup time of the solution and provide a sufficient condition for the existence of global positive solutions. Furthermore, we give estimates of the probability of finite time blowup and for the tail probabilities of an upper bound for the blowup time of the solutions
Hidot, Sullivan. "Un point de vue sur des approches factorielles et probabilistes de la covariance : application à l'analyse locale du mouvement." Phd thesis, Université de La Rochelle, 2007. http://tel.archives-ouvertes.fr/tel-00203241.
Full textNous montrons que l'ACP relationnelle est un cas particulier de l'ACP à noyaux et de l'ACP fonctionnelle, dont nous dressons les schémas de dualité correspondants. L'étude du terme résiduel est menée à l'aide d'approches probabilistes fondées sur la covariance. Dans un premier temps, ce terme est assimilé à un vecteur gaussien et nous introduisons une procédure de classification de matrices de covariance par la distribution de Wishart induite par l'hypothèse de gaussianité. En particulier, l'algorithme EM sur matrices de covariance est proposé. Dans un second temps, on procède à l'analyse fractale du terme résiduel, identifié par une trajectoire d'un processus autosimilaire. L'indice d'autosimilarité est estimé quelque soit l'échantillonnage et nous déterminons dans quelle
mesure cette contrainte temporelle influe sur l'estimation. Nous appliquons les concepts présentés à l'analyse du mouvement : corpus
de mouvements de danse contemporaine (méthodes factorielles et classification par Wishart), et données de biologie marine (segmentation par analyse fractale).
Touibi, Rim. "Sur le comportement qualitatif des solutions de certaines équations aux dérivées partielles stochastiques de type parabolique." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0263.
Full textThis thesis is concerned with stochastic partial differential equations of parabolic type. In the first part we prove new results regarding the existence and the uniqueness of global and local variational solutions to a Neumann initial-boundary value problem for a class of non-autonomous stochastic parabolic partial differential equations. The equations we consider are defined on unbounded open domains in Euclidean space satisfying certain geometric conditions, and are driven by a multiplicative noise derived from an infinite-dimensional fractional Wiener process characterized by a sequence of Hurst parameters H = (Hi) i ∈ N+ ⊂ (1/2,1). These parameters are in fact subject to further constraints that are intimately tied up with the nature of the nonlinearity in the stochastic term of the equations, and with the choice of the functional spaces in which the problem at hand is well-posed. Our method of proof rests on compactness arguments in an essential way. The second part is devoted to the study of the blowup behavior of solutions to semilinear stochastic partial differential equations with Dirichlet boundary conditions driven by a class of differential operators including (not necessarily symmetric) Lévy processes and diffusion processes, and perturbed by a mixture of Brownian and fractional Brownian motions. Our aim is to understand the influence of the stochastic part and that of the differential operator on the blowup behavior of the solutions. In particular we derive explicit expressions for an upper and a lower bound of the blowup time of the solution and provide a sufficient condition for the existence of global positive solutions. Furthermore, we give estimates of the probability of finite time blowup and for the tail probabilities of an upper bound for the blowup time of the solutions
Bernard, Demanze Laurence. "Repondération des informations somesthésiques dans le contrôle postural." Chambéry, 2005. http://www.theses.fr/2005CHAMS001.
Full textThe aim of this work was 1) to investigate healthy subject' s ability to recalibrate their somesthesic plantar information in the control of undisturbed upright stance maintenance and 2) to evaluate the capacities of postural adaptation in subjects with peripheral neuropathy. An analytical method consisting in estimating the movements of the centre of gravity (CG) from the signal of the centre of pressure recorded through a force platform was used. Results show that the nature and the duration of the stimulation can influence differently the postural stability. Finally, the adaptation of the postural behaviour in subjects with peripheral neuropathy would depend on the level of their tactile sensory deficit
Di, Girolami Cristina. "Calcul stochastique via régularisation en dimension infinie avec perspectives financières." Phd thesis, Université Paris-Nord - Paris XIII, 2010. http://tel.archives-ouvertes.fr/tel-00578521.
Full textUss, Mykhailo. "Estimation aveugle de l'écart-type du bruit additif, indépendant et/ou dépendant du signal : application aux images texturées multi/hyperspectrales." Rennes 1, 2011. http://www.theses.fr/2011REN1E008.
Full textVu, Thi Lan Huong. "Analyse statistique locale de textures browniennes multifractionnaires anisotropes." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0094.
Full textWe deal with some anisotropic extensions of the multifractional brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear gaussian models. Eventually we evaluate this procedure on simulated data. Finally, we design some algorithms for the segmentation of an image into regions of homogeneous textures. The first algorithm is based on a K-means procedure which has estimated parameters as input and takes into account their theoretical probability distributions. The second algorithm is based on an EM algorithm which involves continuous execution ateach 2-process loop (E) and (M). The values found in (E) and (M) at each loop will be used for calculations in the next loop. Eventually, we present an application of these algorithms in the context of a pluridisciplinary project which aims at optimizing the deployment of photo-voltaic panels on the ground. We deal with a preprocessing step of the project which concerns the segmentation of images from the satellite Sentinel-2 into regions where the cloud cover is homogeneous
Bourguin, Solesne. "Sur les théorèmes limites et les équations différentielles stochastiques rétrogrades par le calcul de Malliavin." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2011. http://tel.archives-ouvertes.fr/tel-00668819.
Full textChainais, Pierre. "Processus aléatoires invariants d'échelle et analyse multirésolution pour la modélisation d'observations de systèmes physiques." Habilitation à diriger des recherches, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00808965.
Full textRahouli, Sami El. "Modélisation financière avec des processus de Volterra et applications aux options, aux taux d'intérêt et aux risques de crédit." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0042/document.
Full textThis work investigates financial models for option pricing, interest rates and credit risk with stochastic processes that have memory and discontinuities. These models are formulated in terms of the fractional Brownian motion, the fractional or filtered Lévy process (also doubly stochastic) and their approximations by semimartingales. Their stochastic calculus is treated in the sense of Malliavin and Itô formulas are derived. We characterize the risk-neutral probability measures in terms of these processes for options pricing models of Black-Scholes type with jumps. We also study models of interest rates, in particular the models of Vasicek, Cox-Ingersoll-Ross and Heath-Jarrow-Morton. Finally we study credit risk models
Rahouli, Sami El. "Modélisation financière avec des processus de Volterra et applications aux options, aux taux d'intérêt et aux risques de crédit." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0042.
Full textThis work investigates financial models for option pricing, interest rates and credit risk with stochastic processes that have memory and discontinuities. These models are formulated in terms of the fractional Brownian motion, the fractional or filtered Lévy process (also doubly stochastic) and their approximations by semimartingales. Their stochastic calculus is treated in the sense of Malliavin and Itô formulas are derived. We characterize the risk-neutral probability measures in terms of these processes for options pricing models of Black-Scholes type with jumps. We also study models of interest rates, in particular the models of Vasicek, Cox-Ingersoll-Ross and Heath-Jarrow-Morton. Finally we study credit risk models
Es-Sebaiy, Khalifa. "Contributions à l'étude des processus de Lévy et des processus fractionnaires via le calcul de Malliavin et applications en statistiques." Paris 1, 2009. http://www.theses.fr/2009PA010010.
Full textCoviello, Rosanna. "Calcul stochastique via régularisation et applications financières." Phd thesis, Université Paris-Nord - Paris XIII, 2006. http://tel.archives-ouvertes.fr/tel-00121525.
Full textNous fournissons des exemples de portefeuilles autofinancés et introduisons une notion de A-martingale. Un calcul relatif à celle-ci est développé. La condition de non-arbitrage parmi toutes les stratégies dans A est récupérée si le processus des prix de l'actif risqué est une A-martingale.
Nous abordons le problème de la viabilité du marché, de la couverture et de la maximisation de l'utilité de la richesse terminale.
La deuxième partie de la thèse est consacrée à l'étude d'une équation différentielle stochastique unidimensionnelle dirigée par une semimartingale mélangée à un processus à variation cubique finie.
Nous proposons une méthode qui repose sur une transformation réduisant le coefficient de diffusion à 1.
Le développement de la méthode utilisée nous conduit à des résultats significatifs dans l'analyse du calcul via régularisation.
En particulier, une formule de type Ito-Wentzell relative aux processus à variation cubique finie est
établie et la structure des processus weak-Dirichlet par rapport à la filtration brownienne est clarifiée.
Nous démontrons, par une approche similaire, l'existence et l'unicité d'une équation dirigée par un processus hölder-continu dans l'espace. En utilisant une formule d'Ito pour les semimartingales réversibles nous prouvons l'existence d'une solution lorsque le processus dirigeant l'équation est le mouvement brownien et le coefficient de diffusion est juste continu
Coviello, Rosanna. "Calcul stochastique via régularisation et applications financières." Phd thesis, Paris 13, 2006. http://www.theses.fr/2006PA132027.
Full textNous fournissons des exemples de portefeuilles autofinancés et introduisons une notion de A-martingale. Un calcul relatif à celle-ci est développé. La condition de non-arbitrage parmi toutes les stratégies dans A est récupérée si le processus des prix de l'actif risqué est une A-martingale.
Nous abordons le problème de la viabilité du marché, de la couverture et de la maximisation de l'utilité de la richesse terminale.
La deuxième partie de la thèse est consacrée à l'étude d'une équation différentielle stochastique unidimensionnelle dirigée par une semimartingale mélangée à un processus à variation cubique finie.
Nous proposons une méthode qui repose sur une transformation réduisant le coefficient de diffusion à 1.
Le développement de la méthode utilisée nous conduit à des résultats significatifs dans l'analyse du calcul via régularisation.
En particulier, une formule de type Ito-Wentzell relative aux processus à variation cubique finie est
établie et la structure des processus weak-Dirichlet par rapport à la filtration brownienne est clarifiée.
Nous démontrons, par une approche similaire, l'existence et l'unicité d'une équation dirigée par un processus hölder-continu dans l'espace. En utilisant une formule d'Ito pour les semimartingales réversibles nous prouvons l'existence d'une solution lorsque le processus dirigeant l'équation est le mouvement brownien et le coefficient de diffusion est juste continu
Esstafa, Youssef. "Modèles de séries temporelles à mémoire longue avec innovations dépendantes." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD021.
Full textWe first consider, in this thesis, the problem of statistical analysis of FARIMA (Fractionally AutoRegressive Integrated Moving-Average) models endowed with uncorrelated but non-independent error terms. These models are called weak FARIMA and can be used to fit long-memory processes with general nonlinear dynamics. Relaxing the independence assumption on the noise, which is a standard assumption usually imposed in the literature, allows weak FARIMA models to cover a large class of nonlinear long-memory processes. The weak FARIMA models are dense in the set of purely non-deterministic stationary processes, the class of these models encompasses that of FARIMA processes with an independent and identically distributed noise (iid). We call thereafter strong FARIMA models the models in which the error term is assumed to be an iid innovations.We establish procedures for estimating and validating weak FARIMA models. We show, under weak assumptions on the noise, that the least squares estimator of the parameters of weak FARIMA(p,d,q) models is strongly consistent and asymptotically normal. The asymptotic variance matrix of the least squares estimator of weak FARIMA(p,d,q) models has the "sandwich" form. This matrix can be very different from the asymptotic variance obtained in the strong case (i.e. in the case where the noise is assumed to be iid). We propose, by two different methods, a convergent estimator of this matrix. An alternative method based on a self-normalization approach is also proposed to construct confidence intervals for the parameters of weak FARIMA(p,d,q) models.We then pay particular attention to the problem of validation of weak FARIMA(p,d,q) models. We show that the residual autocorrelations have a normal asymptotic distribution with a covariance matrix different from that one obtained in the strong FARIMA case. This allows us to deduce the exact asymptotic distribution of portmanteau statistics and thus to propose modified versions of portmanteau tests. It is well known that the asymptotic distribution of portmanteau tests is correctly approximated by a chi-squared distribution when the error term is assumed to be iid. In the general case, we show that this asymptotic distribution is a mixture of chi-squared distributions. It can be very different from the usual chi-squared approximation of the strong case. We adopt the same self-normalization approach used for constructing the confidence intervals of weak FARIMA model parameters to test the adequacy of weak FARIMA(p,d,q) models. This method has the advantage of avoiding the problem of estimating the asymptotic variance matrix of the joint vector of the least squares estimator and the empirical autocovariances of the noise.Secondly, we deal in this thesis with the problem of estimating autoregressive models of order 1 endowed with fractional Gaussian noise when the Hurst parameter H is assumed to be known. We study, more precisely, the convergence and the asymptotic normality of the generalized least squares estimator of the autoregressive parameter of these models
Leos, Zamorategui Arturo. "On the interface between physical systems and mathematical models : study of first-passage properties of fractional interfaces and large deviations in kinetically constrained models." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC183/document.
Full textThis thesis investigates both equilibrium and nonequilibrium properties of mathematical stochastic models that as a representation of physical systems. By means of extensive numerical simulations we study mean quantities and their fluctuations. Nonetheless, in some systems we are interested also in large deviations. The first part of the thesis focuses on the study of rough interfaces observed in growth processes. These interfaces are simulated with state-of-the-art simulations based on parallel computing which allow us to study very large systems. On the one hand, we discuss the diffusive case given by the Edward-Wilkinson equation in periodic interfaces. For the discrete version of such an equation, we obtain an analytic solution in Fourier space. Fur-ther, we derive an exact expression of the structure factor related with the modes amplitudes describing the interface and compare it with the numerical values. Moreover, using a mapping between stationary interfaces and the Brownian motion, we relate the distribution of the intervals generated by the zeros of the interface with the first-passage distribution given by a the Sparre-Andersen theorem in the case of the Brownian motion. As a generalization of the results obtained in the diffusive case, we study a linear Langevin equation with a Riesz-Feller fractional Laplacian of order z used to simulate sub- and super-diffusive interfaces. In this general case, we identify three regimes based on the scaling behaviour of the cumulants of the intervallengths, the density of zeros and the width of the interface. Finally, we study the evolution in time of some of the observables introduced before. In the second part of the thesis, we study the dynamical phase transition in kinetically constrained models (KCMs) in order to get some insight on the glass transition observed in structural glasses. In a one-dimensional KCM we study the geometry of the bubbles of inactivity in space-time for systems at different temperatures. We find that the spatial length of the bubbles does not scale diffusively with its temporal duration. In contrast, we confirm a vidiffusive behaviour for other quantities studied. Further, by means of large deviation theory and cloning algorithms, we identify the dynamical phase transition in two-dimensional systems. To start with, we measure numerically the dynamical free energy both by measuring the largest eigenvalue of the evolution operator,for small systems, and via the cloning algorithm, for larger systems. We conjecture a value λ c = Σ/K, with Σ the surface tensionof a bubble of activity surrounded by a sea of inactive sites in an effective interfacial model and K the mean activity of the system, for each of the systems studied. For the activity of the system and the occupation number we discuss their scaling properties far from the phase transition. Starting from an empty system subject to different boundary conditions, we investigate the front propagation of active sites. We argue that the phase transition in this case can be identified by the abrupt slowing-down of the front. This is done by measuring the ballistic speed of the front in the simplest case studied. Finally, we propose an effective model following the Feynman-Kac formula for a moving front.-proprietés de premier passage, interface rugueuse, diffusion fractionnaire , système hors d'équilibre, transition de phase dynamique, modèle cinétiquement contraint, grandes déviations.-first-passage properties, rough interface, fractional diffusion, out-of-equilibrium system, dynamical phase transition, kinetically constrained model, large deviations