Academic literature on the topic 'Movable façade'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Movable façade.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Movable façade"

1

Alby, E., P. Grussenmeyer, L. Bitard, et al. "DIGITIZATION OF BLOCKS AND VIRTUAL ANASTYLOSIS OF AN ANTIQUE FACADE IN PONT-SAINTE-MAXENCE (FRANCE)." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W5 (August 18, 2017): 15–20. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w5-15-2017.

Full text
Abstract:
This paper is dedicated to the digitization of blocks and virtual anastylosis of an antique façade in Pont-Sainte-Maxence (France). In 2014 during the construction of a shopping center, the National Institute for Preventive Archaeological Research (INRAP) discovered a Gallo-Roman site from the 2<sup>nd</sup> century AD. The most interesting part of the site for the study is a façade of 70 meters long by nearly 10 meters high. The state of the conservation of the blocks of the façade makes them exceptional due to the question raised by the collapse. Representative and symbolic blocks of this building have been selected for a virtual anastylosis study. The blocks discovered belong to different types: decorated architectural blocks, monumental statuary elements and details of very fine decorations. The digital reproduction of the façade will facilitate the formulation of hypothesis for the collapse of the structure. The Photogrammetry and Geomatics Group from INSA Strasbourg is in charge of the digitization, the anastylosis and the development of exploratory methods for understanding the ruin of the façade. To develop the three-dimensional model of the facade, approximately 70 blocks of various dimensions were chosen by the archaeologists. The choice of the digitization technique is made according to the following pragmatic criterion: the movable objects are acquired with a scan-arm or a hand-held scanner in the laboratory and the largest blocks are recorded by photogrammetry at the repository near Paris. The expected types of deliverables are multiple: very accurate 3D models with the most faithful representation to document the objects in the best way and with optimized size model allowing easy handling during anastylosis tests. The visual aspect of the models is also a very important issue. Indeed, textures from photos are an excellent way to bring about the realism of the virtual model, but fine details of the object are sometimes blurred by the uniformity of the color of the original material. Acquisition by hand-held scanner does not provide the textures (they must be acquired according to a complementary process). The data types are therefore different depending on the acquisition. The type of rendering of the models depends therefore on precise choices to be defined optimally. After the acquisition, hypothesis for the construction of the façade must be validated and / or adapted by the anastylosis of the digitized blocks. Different cases must be taken into account. First, the reconstruction of broken blocks is done by adjusting the recovered fragments. If all the fragments discovered are close to the initial shape of the block, the process is assimilated to a puzzle of complex surfaces. If the fragments have no contact but are an integral part of the block, the proportion of hypotheses in relation to the contact pieces is changed. And finally, if the blocks are to be assembled together by superposition and thanks to a common plan, as assumed during the construction, the restitution could be based on the positions of discoveries and hypotheses based on the architectural knowledge of this period. Each of these three methods of reconstruction involves different processes. The three-dimensional model will be validated by the positioning of the blocks and extended according to the actual dimensions of the façade. Different collapse scenarios will result from this study.
APA, Harvard, Vancouver, ISO, and other styles
2

Asefi, Maziar, and Sepide Shoaee. "PROPOSING A NOVEL KINETIC SKIN FOR BUILDING FACADES USING SCISSOR-LIKE-ELEMENT STRUCTURES." International Journal of Architectural Research: ArchNet-IJAR 12, no. 3 (2018): 273. http://dx.doi.org/10.26687/archnet-ijar.v12i3.1607.

Full text
Abstract:
In recent years, kinetic facades have emerged as a suitable alternative for building skins that meet the demands for comfort factors of inside and outside environment and aesthetic criteria. This paper demonstrates a novel transformable geometric pattern inspired by Persian Architecture that provides an environmentally protective yet aesthetically pleasing building skin. This novel skin that is used for building facades is composed of geometric modular units mainly consisting of two kinds of scissor-like element (SLE): simple scissor-like elements and modified scissor-like elements which are linked together by movable joints. These units can be connected together to create a transformable system attached to the existing or new buildings or be used for a particular part of a building. This paper presents a research-based design project using a rarely used SLE system for transformable building facade. In this methodology, in the first stage, a library study was used to find, categorize and evaluate the transformable building skins using SLE systems. In the second stage, an experimental study was carried out to evaluate the best movement strategies for SLE units that employ the most efficient activation and driving system for the proposed geometry. In the final stage through physical and digital model making process, the alternatives derived from the previous stage were analyzed and the best transformation strategies that best suit the selected design was chosen. The result of this paper is a proposal for a transformable grid of SLE systems that can be attached to existing or new building façade and is not only able to control the environmental condition of the building, but it can also change its appearance during a course of a day. The transformation mechanism used in this design is a combination of two types of scissor structure employing pivotal and rotary movement supported on the tracks provided on the building façade.
APA, Harvard, Vancouver, ISO, and other styles
3

Ahady, Shambalid, Nirendra Dev, and Anubha Mandal. "Solar radiation control passive strategy for reduction of heating and cooling energy use in arid climate: Case of Afghanistan." Indoor and Built Environment 31, no. 4 (2021): 955–71. http://dx.doi.org/10.1177/1420326x211050114.

Full text
Abstract:
Buildings are significant consumers of energy and producer of greenhouse gases worldwide, and serious efforts have been put into designing energy-efficient buildings. Significant technological advances have been achieved in developed countries; however, advances have rarely been adopted in developing countries like Afghanistan. Such trends emerge from the lack of research in designing energy-efficient buildings to local conditions, practices and materials. This research focused on building energy modelling and simulation to evaluate the energy performance impact of different shading and orientation. The research design follows a case study over an actual seven-storey multi-apartment residential building in the city of Mazar-I-Sharif, Afghanistan, using primary field data and dynamic simulation. Findings demonstrated that neighbouring structures have a positive correlation with a cooling demand. Meanwhile, south is the optimal orientation to face the building's glazed façade, saving up to 7.4% of cooling and 9.7% of heating energy. Moreover, movable shading devices installed on the building's openings in the summer season reduce the building energy load up to 19%, with a total energy cost reduction of AFN. 188,448 ($2447.37 US) annually. The study underlines the vast research scope in customizing building designs to Afghanistan's climatic conditions and other developing countries, thus contributing to buildings’ sustainability.
APA, Harvard, Vancouver, ISO, and other styles
4

Pérez-Carramiñana, Carlos, Ángel Benigno González-Avilés, Antonio Galiano-Garrigós, and Andrea Lozoya-Peral. "Optimization of Architectural Thermal Envelope Parameters in Modern Single-Family House Typologies in Southeastern Spain to Improve Energy Efficiency in a Dry Mediterranean Climate." Sustainability 14, no. 7 (2022): 3910. http://dx.doi.org/10.3390/su14073910.

Full text
Abstract:
The increasing regulatory requirements for energy efficiency in Europe imply a significant increase in insulation and solar control of buildings, especially in hot and semi-arid climates with high annual insolation such as the Spanish Mediterranean southeast. The consequences in architectural design to optimize compliance with the new technical and regulatory requirements of nearly zero-energy buildings are high. This paper analyzes the energy performance of a modern single-family house on the Spanish Mediterranean coast. The objective is to determine which design parameters most influence the energy improvement of this case study in order to establish design strategies that can be generalized to other new construction or energy retrofit projects, taking into account the specific characteristics of the warm and semi-arid Mediterranean climate. The scientific novelty of the work is to demonstrate that the design criteria of most modern single-family houses built or rehabilitated in the Spanish Mediterranean in the last decade comply with the energy efficiency requirements of Directive 2010/31/EU but are not specifically adapted and optimized for the special characteristics of the dry Mediterranean climate. This is the case of the house studied in this paper. The methodology used consisted of a systematized study of the main construction and geometric parameters that most influence the thermal calculation of this project: the thermal insulation thickness, thermal transmittance of the glazing, solar control of the glazing, total solar energy transmittance of the glazing with the movable shading device activated, size of glazing and the size of façade overhangs. The results obtained show that the use of mobile solar protection devices in summer, such as awnings or blinds, reduces the cooling need in summer up to 44% and the overall annual energy need (Cooling + Heating) up to 20%. This implementation is more efficient than increasing the thermal insulation of facades and glazing, reducing the size of windows or increasing overhangs. The most optimal solution is the simultaneous modification of several parameters. This reduces both heating need in winter and cooling need in summer, achieving an overall reduction in an annual need of 48%. This multiple solution improves the annual energy performance of the house much more than any solution consisting of modifying a single individual parameter. The results determine trends, explanations and deductions that can be extrapolated to other projects.
APA, Harvard, Vancouver, ISO, and other styles
5

Guerra, Andrea, and Michael Haggerty. "Movable Façades: Palladio's Plan for the Church of San Giorgio Maggiore in Venice and Its Successive Vicissitudes." Journal of the Society of Architectural Historians 61, no. 3 (2002): 276–95. http://dx.doi.org/10.2307/991783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baldinelli, G. "Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system." Building and Environment 44, no. 6 (2009): 1107–18. http://dx.doi.org/10.1016/j.buildenv.2008.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yi, Hwang. "4D-printed parametric façade in architecture: prototyping a self-shaping skin using programmable two-way shape memory composite (TWSMC)." Engineering, Construction and Architectural Management ahead-of-print, ahead-of-print (2021). http://dx.doi.org/10.1108/ecam-05-2021-0428.

Full text
Abstract:
PurposeThis study aims to present an architectural application of 4D-printed climate-adaptive kinetic architecture and parametric façade design.Design/methodology/approachThis work investigates experimental prototyping of a reversibly self-shaping façade, by integrating the parametric design approach, smart material and 4D-printing techniques. Thermo-responsive building skin modules of two-way shape memory composite (TWSMC) was designed and fabricated, combining the shape memory alloy fibers (SMFs) and 3D-printed shape memory polymer matrices (SMPMs). For geometry design, deformation of the TWSMC was simulated with a dimension-reduced mathematical model, and an optimal arrangement of three different types of TWSMC modules were designed and fabricated into a physical scale model.FindingsModel-based experiments show robust workability and formal reversibility of the developed façade. Potential utility of this module for adaptive building design and construction is discussed based on the results. Findings help better understand the shape memory phenomena and presented design-inclusive technology will benefit architectural communities of smart climate-adaptive building.Originality/valueTwo-way reversibility of 4D-printed composites is a topic of active research in material science but has not been clearly addressed in the practical context of architectural design, due to technical barriers. This research is the first architectural presentation of the whole design procedure, simulation and fabrication of the 4D-printed and parametrically movable façade.
APA, Harvard, Vancouver, ISO, and other styles
8

Galuppi, Laura, and Enrica Riva. "Experimental and numerical characterization of twisting response of thin glass." Glass Structures & Engineering, February 9, 2022. http://dx.doi.org/10.1007/s40940-022-00166-0.

Full text
Abstract:
AbstractThe use of new generation thin, lightweight and damage-resistant glass, originally conceived for electronic displays, is moving its first steps in the built environment, in particular for adaptive and movable skins and façades. Its experimental characterization represents pearhaps one of the main open problems in glass research and engineering. Indeed, standard methods to test the glass strength cannot be used, due to geometrical nonlinearities, thwarting the correct procedure and the strenght calculation. Here, an innovative test procedure is proposed, where a rectangular thin glass element is twisted with high distortion level, while rigid elements constrain two opposite plate edges to remain straight. A dedicated experimental apparatus, that can be used to test specimens with different size and thickness, has been designed and used to test, up to rupture, chemically tempered thin glass with thickness of 1.1 mm and 2.1 mm. Experimental results have been compared to those of numerical analyses, with particular regard to the influence of different constrain conditions on the plate response.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography