Academic literature on the topic 'Movie Box Office'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Movie Box Office.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Movie Box Office"
Hu, Ya-Han, Wen-Ming Shiau, Sheng-Pao Shih, and Cho-Ju Chen. "Considering online consumer reviews to predict movie box-office performance between the years 2009 and 2014 in the US." Electronic Library 36, no. 6 (December 10, 2018): 1010–26. http://dx.doi.org/10.1108/el-02-2018-0040.
Full textFeng, Kaicheng, and Xiaobing Liu. "Adaptive Attention with Consumer Sentinel for Movie Box Office Prediction." Complexity 2020 (December 7, 2020): 1–9. http://dx.doi.org/10.1155/2020/6689304.
Full textLee, Sangjae, and Joon Yeon Choeh. "Movie Production Efficiency Moderating between Online Word-of-Mouth and Subsequent Box Office Revenue." Sustainability 12, no. 16 (August 14, 2020): 6602. http://dx.doi.org/10.3390/su12166602.
Full textBarranco, Raymond E., Nicole E. Rader, and Anna Smith. "Violence at the Box Office." Communication Research 44, no. 1 (July 8, 2016): 77–95. http://dx.doi.org/10.1177/0093650215614363.
Full textHung, Yu-Chen, and Chong Guan. "Winning box office with the right movie synopsis." European Journal of Marketing 54, no. 3 (February 24, 2020): 594–614. http://dx.doi.org/10.1108/ejm-01-2019-0096.
Full textGarcia-del-Barrio, Pedro, and Hugo Zarco. "Do movie contents influence box-office revenues?" Applied Economics 49, no. 17 (August 27, 2016): 1679–88. http://dx.doi.org/10.1080/00036846.2016.1223828.
Full textAhmad, Ibrahim Said, Azuraliza Abu Bakar, Mohd Ridzwan Yaakub, and Mohammad Darwich. "Sequel movie revenue prediction model based on sentiment analysis." Data Technologies and Applications 54, no. 5 (October 8, 2020): 665–83. http://dx.doi.org/10.1108/dta-10-2019-0180.
Full textMohanty, Saurav, Nicolle Clements, and Vipul Gupta. "Investigating the Effect of eWOM in Movie Box Office Success Through an Aspect-Based Approach." International Journal of Business Analytics 5, no. 1 (January 2018): 1–15. http://dx.doi.org/10.4018/ijban.2018010101.
Full textLee, O.-Joun, Seung-Bo Park, Daul Chung, and Eun-Soon You. "Movie Box-office Analysis using Social Big Data." Journal of the Korea Contents Association 14, no. 10 (October 28, 2014): 527–38. http://dx.doi.org/10.5392/jkca.2014.14.10.527.
Full textPowers, Robert A. "Activities for Students: Big Box—Office Bucks." Mathematics Teacher 94, no. 2 (February 2001): 112–18. http://dx.doi.org/10.5951/mt.94.2.0112.
Full textDissertations / Theses on the topic "Movie Box Office"
Doshi, Lyric (Lyric Pankaj). "Using sentiment and social network analyses to predict opening-movie box-office success." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61284.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 59-60).
In this thesis, we explore notions of collective intelligence in the form of web metrics, social network analysis and sentiment analysis to predict the box-office income of movies. Successful prediction techniques would be advantageous for those in the movie industry to gauge their likely return and adjust pre- and post-release marketing efforts. Additionally, the approaches in this thesis may also be applied to other markets for prediction as well. We explore several modeling approaches to predict performance on the Hollywood Stock Exchange (HSX) prediction market as well as overall gross income. Some models use only a single movie's data to predict its future success, while other models build from the data of all the movies together. The most successful model presented in this thesis improves on HSX and provides high correlations/low predictive error on both HSX delist prices as well as the final gross income of the movies. We also provide insights for future work to build on this thesis to potentially uncover movies that perform exceptionally poorly or exceptionally well.
by Lyric Doshi.
M.Eng.
Tesař, Tomáš. "Analýza výnosnosti 3D ve filmu." Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-114436.
Full textSomburanasin, Monsicha. "Risky Business : Does recognition reduce uncertainty of the movie industry global box office revenue? * of the movie as a one-liner to reflect the characteristics of the movie industry. notifies that Risky Business (1983) is a comedy-drama movie starring Tom Cruise. The writer intentionally uses the name Master Thesis." Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Nationalekonomi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-12795.
Full textYao, Kathryn S. "The Future of Chollywood: The Imminent Rise of China's Film Industry." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/cmc_theses/776.
Full textCassam-Chenaï, Arnaud. "Représentations et réception des films sur la Seconde Guerre mondiale en France à la Libération (1944-1950) : la concurrence des victimes." Thesis, Bordeaux 3, 2019. http://www.theses.fr/2019BOR30023.
Full textIn the immediate aftermath of the French liberation, theaters across the country began to project movies centered around the recent conflict. Between 1944 and 1950, World War II was the central theme of more than 302 films. However, these films came from different countries; they were not produced at the exact same time; they did not depict the conflict through the same angle; and more importantly, they did not cover the same class of war victims. Wide differences exist between a French chronicle of the Occupation and a U.S. war movie, a depiction of the homecoming of Italian prisoners and the story of soviet resistance or a narration of British citizens’ everyday life during the war. At the time, the response of the French audience and critics to these diverse movie releases varied greatly too. By studying these movies and their reception at the time of their releases, the present study informs our understanding of the emergence of the French mythology surrounding this major conflict. In three chapters, I analyze the cinematographic depictions of various groups of war victims in movies of this era, as well as the audience and critics’ response at the time. In the first chapter, I describe the theoretical underpinnings of the cinema history, as well as the narration of World War II as presented by these movies, using statistics specifically collected for this study. The two following chapters offer a series of representative case studies. I first focus on different groups of victims actively involved in the conflict: militaries on and off the front-lines, members of the resistance, and spies and assimilated individuals. I then study the non-fighting victims: civilians under the occupation, civilians living in the free zone, homecoming prisoners, members of the Jewish community and other victims of antisemitism, and finally, the children
FLORÊNCIO, João Carlos Procópio. "Análise e predição de bilheterias de filmes." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17639.
Full textMade available in DSpace on 2016-08-08T12:41:40Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) dissertacao-mestrado-jcpf.pdf: 6512881 bytes, checksum: 0e42b481cf73ab357ca212b410fbd5ee (MD5) Previous issue date: 2016-02-29
Prever o sucesso de um filme e, por consequência, seu sucesso nas bilheterias tem uma grande importância na indústria cinematográfica, desde a fase de pré-produção do filme, quando os investidores querem saber quais serão os filmes mais promissores, até nas semanas seguintes ao seu lançamento, quando se deseja prever as bilheterias das semanas restantes de exibição. Por conta disso, essa área tem sido alvo de muitos estudos que tem usado diferentes abordagens de predição, seja na seleção das características dos filmes como nas técnicas de aprendizagem, para atingir uma maior capacidade de prever o sucesso dos filmes. Neste trabalho de mestrado, foi feita uma investigação sobre o comportamento das principais características dos filmes (gênero, classificação etária, orçamento de produção, etc), com maior foco nos resultados das bilheterias e sua relação com as características dos filmes, de forma a obter uma visão mais clara de como as caracaterísticas dos filmes podem influenciar no seu sucesso, seja ele interpretado como lucro ou volume de bilheterias. Em seguida, em posse de uma base de filmes extraída do Box-Office Mojo e do IMDb, foi proposto um novo modelo de predição de box office utilizando os dados disponíveis dessa base, que é composta de: meta-dados dos filmes, palavras-chaves, e dados de bilheterias. Algumas dessas características são hibridizadas com o objetivo evidenciar as combinações de características mais importantes. É aplicado também um processo de seleção de características para excluir aquelas que não são relevantes ao modelo. O modelo utiliza Random Forest como máquina de aprendizagem. Os resultados obtidos com a técnica proposta sugerem, além de uma maior simplificação do modelo em relação a estudos anteriores, que o método consegue obter taxas de acerto superior 90% quando a classificação é medida com a métrica 1-away (quando a amostra é classificada com até 1 classe de distância), e consegue melhorar a qualidade da predição em relação a estudos anteriores quando testado com os dados da base disponível.
Predicting the success of a movie and, consequently, its box office success, has a huge importance in the motion pictures industry. Its importance comes since from the pre-production period, when the investors want to know the most promising movies to invest, until the first few weeks after release, when exhibitors want to predict the box office of the remaining weeks of exhibition. As result, this area has been subject of many studies which have used different prediction approaches, in both feature selection and learning methods, to achieve better capacity to predict movies’ success. In this mastership work, a deep research about the movie’s main features (genre, MPAA, production budget, etc) has been done, with more focus on the results of box offices and its relation with the movie’s features in order to get a clearer view of the organization of information and how variables can influence the success of a film, whether this success be interpreted as profit or revenue volumes at the box office. Then, in possession of a movie database extracted from Box-Office Mojo and IMDb, it was proposed a new box office prediction model based on available data from the database composed of: movie meta-data, key-words and box office data. Some of these features are hybridized aiming to emphasize the most important features’ combinations. A features’ selection process is also applied to exclude irrelevant features. The obtained results with the proposed method suggests, besides a further simplification of the model compared to previous studies, that the method can get hit rate of more than 90% when classification is measured with the metric 1-away (when the sample is classified within 1 class of distance from the right class), and achieve a improvement in the prediction quality when compared to previous studies using the available database.
Goetomo, Desmond. "Hollywood redux: A comparative study of film remake performance in the foreign and domestic box office." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1888.
Full textPolyakov, Daniel M. "Estimating the Effects of Integrated Film Production on Box-Office Performance: Do Inhouse Effects Influence Studio Moguls?" Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/cmc_theses/245.
Full textJohansson, Jesper. "Success at the box office in the age of streaming services : An examination of how streaming services have impacted the dynamics of successful movies in the cinema." Thesis, Internationella Handelshögskolan, Jönköping University, IHH, Nationalekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-50486.
Full textEnting, Staffan. "Politisk kommunikation genom film : En studie kring hur den realpolitiska agendan speglas i den moderna spelfilmen." Thesis, Linnéuniversitetet, Institutionen för film och litteratur (IFL), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76679.
Full textJag studerar huruvida man kan dra en parallell mellan den rådande politiska agendan och filmens politiska teman samt hur skurkgestaltningen ter sig i relation till vem den politiska motståndaren var då filmen gjordes. Litteraturen är tydlig kring att film används för att sprida normer och politiska budskap. Det finns flera exempel kring hur man under kalla kriget främst hade Sovjet eller personer och beteenden som tydligt kunde kopplas till Sovjet som skurkar. Efter kalla kriget, i samband med Gulfkriget, blev det under en tid araber för att därefter vara en mer oklar skurkroll (ofta naturkatastrofer, organiserad brottslighet, korruption, etc.). Efter terrorangreppen mot USA den 11:e september 2001 fick man återigen en tydlig motståndare och den arabiske terroristen blev den nya antagonisten. I min studie utgår jag från de fem filmer som drog in mest pengar (justerat för inflation), som utspelar sig i vår värld och som kom under kalla kriget, samt de fem filmer inom samma kategorier som kom därefter. Detta för att se om jag kan se en tydlig parallell mellan den rådande politiska agendan och hur skurkarna gestaltas samt vilka politiska teman som tas upp. Oväntat nog finner jag att ingen sådan tydlig koppling finns i de exemplen. Jag finner liknande paralleller inom vissa genres, såsom actionfilm, thrillers och äventyrsfilm, men ingen direkt koppling till filmen generellt kan göras.
Books on the topic "Movie Box Office"
Gunter, Barrie. Predicting Movie Success at the Box Office. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3.
Full textCollection, Kobal, ed. Box-office champs: The most popular movies of the last 50 years. New York: Portland House, 1990.
Find full textKay, Eddie Dorman. Box-office greats: The most popular movies of the last 50 years. London: Tiger, 1990.
Find full textThomas, Lennon, ed. Writing movies for fun and profit!: How we made a billion dollars at the box office and you can, too! New York, NY: Touchstone, 2011.
Find full textCuellar, Carol. Box Office Blockbusters: Fifty-Five Movie Songs & Themes. Alfred Publishing Company, 1994.
Find full textCuellar, Carol. Box Office Blockbusters: Fifty-Five Movie Songs & Themes. Alfred Publishing Company, 1994.
Find full textHassler-Forest, Dan. Roads Not Taken in Hollywood’s Comic Book Movie Industry. Edited by Thomas Leitch. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199331000.013.23.
Full textAnders, Kindem Gorham, ed. The international movie industry. Carbondale: Southern Illinois University Press, 2000.
Find full textTownsend, Sylvia. Bumpy Road. University Press of Mississippi, 2019. http://dx.doi.org/10.14325/mississippi/9781496804143.001.0001.
Full textBox-office greats: The most popular movies of the last 50 years. Tiger Books, 1990.
Find full textBook chapters on the topic "Movie Box Office"
Sachdev, Shaiwal, Abhishek Agrawal, Shubham Bhendarkar, Bakshi Rohit Prasad, and Sonali Agarwal. "Movie Box-Office Gross Revenue Estimation." In Advances in Intelligent Systems and Computing, 9–17. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8633-5_2.
Full textGunter, Barrie. "Is Box Office Still Relevant?" In Predicting Movie Success at the Box Office, 1–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_1.
Full textGunter, Barrie. "Is Studio Size Important to Box Office Success?" In Predicting Movie Success at the Box Office, 35–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_3.
Full textGunter, Barrie. "Does Marketing and Promotion Create Box Office Success?" In Predicting Movie Success at the Box Office, 71–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_5.
Full textGunter, Barrie. "How Important Is It to Get Movie-Goers Onside?" In Predicting Movie Success at the Box Office, 227–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_14.
Full textGunter, Barrie. "Why are Sequels and Remakes So Popular with Movie Studios?" In Predicting Movie Success at the Box Office, 161–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_10.
Full textGunter, Barrie. "How Significant Is Star Power?" In Predicting Movie Success at the Box Office, 175–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_11.
Full textGunter, Barrie. "Do Awards Make a Difference?" In Predicting Movie Success at the Box Office, 195–207. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_12.
Full textGunter, Barrie. "What Is the Role of Critics’ Reviews?" In Predicting Movie Success at the Box Office, 209–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_13.
Full textGunter, Barrie. "Is There a Formula for Success?" In Predicting Movie Success at the Box Office, 243–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71803-3_15.
Full textConference papers on the topic "Movie Box Office"
Wu, Shuangyan, YuFan Zheng, Zhikang Lai, Fujian Wu, and Choujun Zhan. "Movie box office prediction based on ensemble learning." In 2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN). IEEE, 2019. http://dx.doi.org/10.1109/ispce-cn48734.2019.8958631.
Full textZhang, Zhenlong, Jianping Chai, Bo Li, Yan Wang, Min An, and Zhougui Deng. "Movie Box Office Inteval Forecasting Based on CART." In 2015 8th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2015. http://dx.doi.org/10.1109/iscid.2015.165.
Full textCheang, Yee Mun, and Tan Chye Cheah. "Predicting Movie Box-Office Success and The Main Determinants of Movie Box Office Sales in Malaysia using Machine Learning Approach." In ICSCA 2021: 2021 10th International Conference on Software and Computer Applications. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3457784.3457793.
Full textRhee, Travis Ginmu, and Farhana Zulkernine. "Predicting Movie Box Office Profitability: A Neural Network Approach." In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2016. http://dx.doi.org/10.1109/icmla.2016.0117.
Full textOh, Sehwan, Joongho Ahn, and Hyunmi Baek. "Viewer Engagement in Movie Trailers and Box Office Revenue." In 2015 48th Hawaii International Conference on System Sciences (HICSS). IEEE, 2015. http://dx.doi.org/10.1109/hicss.2015.207.
Full textZhou, Yao, and Gary G. Yen. "Evolving Deep Neural Networks for Movie Box-Office Revenues Prediction." In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. http://dx.doi.org/10.1109/cec.2018.8477691.
Full textZhang, Zhenlong, Bo Li, Zhougui Deng, Jianping Chai, Yan Wang, and Min An. "Research on Movie Box Office Forecasting Based on Internet Data." In 2015 8th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2015. http://dx.doi.org/10.1109/iscid.2015.228.
Full textQuader, Nahid, Md Osman Gani, Dipankar Chaki, and Md Haider Ali. "A machine learning approach to predict movie box-office success." In 2017 20th International Conference of Computer and Information Technology (ICCIT). IEEE, 2017. http://dx.doi.org/10.1109/iccitechn.2017.8281839.
Full textSubramaniyaswamy, V., M. Viginesh Vaibhav, R. Vishnu Prasad, and R. Logesh. "Predicting movie box office success using multiple regression and SVM." In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2017. http://dx.doi.org/10.1109/iss1.2017.8389394.
Full textRuan, Dong-ru, Tao Liu, and Kai Gao. "Modelling on movie box-office prediction based on LFM algorithm." In 2015 7th International Conference on Modelling, Identification and Control (ICMIC). IEEE, 2015. http://dx.doi.org/10.1109/icmic.2015.7409369.
Full text