Academic literature on the topic 'Movie data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Movie data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Movie data"
D.A., Olubukola, Stephen O.M., Funmilayo A.K., Ayokunle O., Oyebola A., Oduroye A., Wumi A., and Yaw M. "Movie Success Prediction Using Data Mining." British Journal of Computer, Networking and Information Technology 4, no. 2 (September 22, 2021): 22–30. http://dx.doi.org/10.52589/bjcnit-cqocirec.
Full textKomurlekar, Runali. "Movie Recommendation Model from Data through Online Streaming." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 1549–51. http://dx.doi.org/10.22214/ijraset.2021.37495.
Full textSuzuki, Shigeru. "Automated Movie Production of CloudSat Data." Journal of the Institute of Image Information and Television Engineers 69, no. 2 (2015): 151–54. http://dx.doi.org/10.3169/itej.69.151.
Full textHu, Ya-Han, Wen-Ming Shiau, Sheng-Pao Shih, and Cho-Ju Chen. "Considering online consumer reviews to predict movie box-office performance between the years 2009 and 2014 in the US." Electronic Library 36, no. 6 (December 10, 2018): 1010–26. http://dx.doi.org/10.1108/el-02-2018-0040.
Full textShishodia, Dinesh. "Movie Recommendation System." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 4919–24. http://dx.doi.org/10.22214/ijraset.2021.35929.
Full textWang, Yibo, Mingming Wang, and Wei Xu. "A Sentiment-Enhanced Hybrid Recommender System for Movie Recommendation: A Big Data Analytics Framework." Wireless Communications and Mobile Computing 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8263704.
Full textHuang, Yi-Ting, and Ping-Feng Pai. "Using the Least Squares Support Vector Regression to Forecast Movie Sales with Data from Twitter and Movie Databases." Symmetry 12, no. 4 (April 15, 2020): 625. http://dx.doi.org/10.3390/sym12040625.
Full textJagjeet Singh and Vibhor Sharma. "Movie Genre Prediction Based on Plot Synopsis." November 2020 6, no. 11 (November 23, 2020): 118–21. http://dx.doi.org/10.46501/ijmtst061121.
Full textV R, Nithin. "Predicting Movie Success Based On Imdb Data." International Journal for Research in Applied Science and Engineering Technology V, no. X (October 22, 2017): 504–7. http://dx.doi.org/10.22214/ijraset.2017.10074.
Full textNithin, VR, M. Pranav, PB Sarath Babu, and A. Lijiya. "Predicting Movie Success Based on IMDB Data." International Journal of Business Intelligents 003, no. 002 (December 15, 2014): 34–36. http://dx.doi.org/10.20894/ijbi.105.003.002.004.
Full textDissertations / Theses on the topic "Movie data"
Müglich, Marcel. "Motion Feature Extraction of Video and Movie Data." Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214030.
Full textVOD-marknaden (Video på begäran) är en växande marknad, dels i mängden tillgängligt innehåll samt till antalet användare. Det skapar en utmaning att matcha personligt relevant innehåll för varje enskild användare. Utmaningen hanteras genom att implementera ett rekommendationssystem som hittar relevant innehåll genom att automatiskt identifiera mönster i varje användaren beteende. För att hitta sådana mönster används i vanliga fall Collaborative filtering; som utvärderar mönster utifrån grupper av flera användare och kors- rekommenderar produkter mellan dem utan att ta nämnvärd hänsyn till produktens innehåll. (De som har köpt X har också köpt Y) Ett alternativ till detta är att tillämpa en innehållsbaserad strategi. Innehållsbaserade strategier analyserar den faktiska video-datan i de produkter som har konsumerats av en enskild användare med syfte att därifrån extrahera kvantifierbar information. Denna information kan användas för att hitta relevanta filmer med liknande videoinnehåll. Inriktningen för denna avhandling berör utvinning av kamerarörelsevektorer från film- och videodata. Tre extraktionsmetoder presenteras och utvärderas för att klassificera kamerans rörelse, kamerarörelsen intensitet och för att detektera scenbyten.
Almadi, Kanika. "Quantitative study of the movie industry based on IMDb data." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113502.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 47).
Big Data Analytics is an emerging business capability that is providing far more intelligence to the companies nowadays to make well-informed decisions and better formulate their business strategies. This has been made possible due to easy accessibility of immense volume of data stored in clouds in a secure manner. As a result, online product review platforms have also gained enormous popularity and are successfully providing various services to the consumers primarily via user-generated content. The thesis makes use of raw and unstructured data available on IMDB website, cleans it up and organizes it in a structured format suitable for quick analysis by various analytical softwares. The thesis then examines the available literature on analytics done on IMDB movie dataset and identifies that little work has been carried out in predicting the financial success of the movies. The thesis thus carries out data analytics on the IMDB movie sets and highlights several parameters like movie interconnectedness and director's credentials, which correlates positively with the movie gross revenue. The thesis thereafter loosely defines a movie innovative index encompassing of parameters like number of references, number of follows and number of remake and discusses how the abundance of some of these parameters have a positive impact on box office success of the movie. Contrarily the lack of presence of these parameters thereby characterizing an innovative movie may not be so well received by the audiences thus leading to poor box office performance. The thesis also proposes how the director's credentials in the film industry measured by his/her total number of nominations and awards winning in the Oscar have a positive impact on the financial success of the movie and their own career advancement.
by Kanika Almadi.
S.M. in Engineering and Management
Wrenn, Alex. "Differences in Seasonality Based on Movie Quality." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/cmc_theses/2029.
Full textArroniz, Inigo. "EXTRACTING QUANTITATIVE INFORMATIONFROM NONNUMERIC MARKETING DATA: AN AUGMENTEDLATENT SEMANTIC ANALYSIS APPROACH." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3083.
Full textPh.D.
Department of Marketing
Business Administration
Business Administration PhD
Wu, Yuk Ying. "Movie allocation in parallel video servers /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?COMP%202002%20WU.
Full textIncludes bibliographical references (leaves 69-76). Also available in electronic version. Access restricted to campus users.
Karaman, Hilal. "A Content Based Movie Recommendation System Empowered By Collaborative Missing Data Prediction." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612037/index.pdf.
Full textWhich one should I choose?&rdquo
arises in their minds. Recommendation Systems address the problem of getting confused about items to choose, and filter a specific type of information with a specific information filtering technique that attempts to present information items that are likely of interest to the user. A variety of information filtering techniques have been proposed for performing recommendations, including content-based and collaborative techniques which are the most commonly used approaches in recommendation systems. This thesis work introduces ReMovender, a content-based movie recommendation system which is empowered by collaborative missing data prediction. The distinctive point of this study lies in the methodology used to correlate the users in the system with one another and the usage of the content information of movies. ReMovender makes it possible for the users to rate movies in a scale from one to five. By using these ratings, it finds similarities among the users in a collaborative manner to predict the missing ratings data. As for the content-based part, a set of movie features are used in order to correlate the movies and produce recommendations for the users.
Ma, Ke. "Content-based Recommender System for Movie Website." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188494.
Full textRecommender System är ett verktyg som hjälper användarna att hitta innehåll och övervinna informationsöverflöd. Det förutspår användarnas intressen och gör rekommendation enligt räntemodellen användare. Den ursprungliga innehållsbaserade recommender är en fortsättning och utveckling av samarbete filtrering, som inte behöver användarens utvärdering artiklar. Istället är likheten beräknas baserat på informationen objekt som har varit valde av användare, och sedan göra rekommendationen därefter. Med förbättringen av maskininlärning, kan nuvarande innehållsbaserad recommender systemet bygga profil för användare och produkt respektive. Bygga eller uppdatera profilen enligt analysen av objekt som köps eller besöks av användare. Systemet kan jämföra användaren och profilen av artiklar och rekommendera den mest liknande produkt. Så här recommender metod som jämför användaren och produkten direkt kan inte föras in collaborative filtreringsmodell. Grunden för innehållsbaserad algoritm är förvärv och kvantitativ analys av innehållet. Eftersom forskning förvärv och filtrering av textinformation är mogen, många aktuella innehållsbaserade recommender system gör rekommendation enligt analysen av textinformation. Denna uppsats införa innehållsbaserad recommender system för film webbplats VionLabs. Det finns en mängd funktioner som extraherats från en film, är de mångfald och unik, vilket är också skillnaden med andra recommender system. Vi använder dessa funktioner för att konstruera film vektor och beräkna likheter. Vi introducerar en ny metod för att fastställa vikten av funktioner, vilket förbättrar företrädare för filmer. Slutligen utvärderar vi tillvägagångssättet för att illustrera förbättringen.
Peng, Fengjiao S. M. Massachusetts Institute of Technology. "My Personalized Movies : novel system for automatically animating a movie based on personal data and evaluation of its impact on affective and cognitive experience." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120674.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-77).
Storytelling is a fundamental way in which human beings make sense of the world. Animated movies tell stories that engage audience across culture and age groups. I designed and built My Personalized Movies (MPM), a novel system where animated stories are automatically created based on data provided by individuals. The data include self-tracked mood and behavior captured in quantitative measures and descriptive text. MPM is designed to engage viewers through an emotive narrative, induce self-reflection about their mood and behavior patterns, and to improve self-compassion and self-esteem, which mediates behavior change. I demonstrate with a few stages of studies, involving in total 107 participants, that viewers show strong emotional engagement with MPM and can explicitly connect animated characters' stories to one's past experiences. An analysis of 22 participants' facial expression data during MPM reveals that participants' change in implicit self-esteem is positively correlated with the happiness of their facial expression. Participants with higher depression severity, as measured by PHQ9, showed less positive facial expression at the happy moments in the animation.
by Fengjiao Peng.
S.M.
El, Aouad Sara. "Personalized, Aspect-based Summarization of Movie Reviews." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS019.pdf.
Full textOnline reviewing websites help users decide what to buy or places to go. These platforms allow users to express their opinions using numerical ratings as well as textual comments. The numerical ratings give a coarse idea of the service. On the other hand, textual comments give full details which is tedious for users to read. In this dissertation, we develop novel methods and algorithms to generate personalized, aspect-based summaries of movie reviews for a given user. The first problem we tackle is extracting a set of related words to an aspect from movie reviews. Our evaluation shows that our method is able to extract even unpopular terms that represent an aspect, such as compound terms or abbreviations, as opposed to the methods from the related work. We then study the problem of annotating sentences with aspects, and propose a new method that annotates sentences based on a similarity between the aspect signature and the terms in the sentence. The third problem we tackle is the generation of personalized, aspect-based summaries. We propose an optimization algorithm to maximize the coverage of the aspects the user is interested in and the representativeness of sentences in the summary subject to a length and similarity constraints. Finally, we perform three user studies that show that the approach we propose outperforms the state of art method for generating summaries
Persson, Karl. "Predicting movie ratings : A comparative study on random forests and support vector machines." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11119.
Full textBooks on the topic "Movie data"
Underdahl, Keith. Microsoft Windows Movie Maker for dummies. Foster City, CA: IDG Books Worldwide, 2000.
Find full textUnderdahl, Keith. Microsoft Windows Movie Maker for dummies. Foster City, CA: IDG Books Worldwide, 2000.
Find full textMullen, Tony. Blender studio projects: Digital movie-making. Indianapolis: Wiley Technology Pub., 2010.
Find full text1970-, Andaur Claudio, ed. Blender studio projects: Digital movie-making. Indianapolis, Ind: Wiley Pub., 2010.
Find full textCarlson, Jeff. Making a movie in iMovie and iDVD. Berkeley, CA: Peachpit Press, 2005.
Find full textLi, Ying. Video Content Analysis Using Multimodal Information: For Movie Content Extraction, Indexing and Representation. Boston, MA: Springer US, 2003.
Find full textAssociates, Paul Kagan. Kagan's The PPV household: A detailed analysis of PPV movie and event buying patterns based on actual field data. Carmel, CA: Paul Kagan Associates, 2001.
Find full textBook chapters on the topic "Movie data"
Haughton, Dominique, Mark-David McLaughlin, Kevin Mentzer, and Changan Zhang. "What Does “Big Data” Mean? The Data Scientist Point of View." In Movie Analytics, 3–4. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09426-7_2.
Full textHaughton, Dominique, Mark-David McLaughlin, Kevin Mentzer, and Changan Zhang. "What Do We Know About Analyzing Movie Data?" In Movie Analytics, 1–2. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09426-7_1.
Full textHaughton, Dominique, Mark-David McLaughlin, Kevin Mentzer, and Changan Zhang. "Can We Predict Oscars from Twitter and Movie Review Data?" In Movie Analytics, 41–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09426-7_6.
Full textKharb, Latika, Deepak Chahal, and Vagisha. "Forecasting Movie Rating Through Data Analytics." In Data Science and Analytics, 249–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5830-6_21.
Full textMa, Manqing, Wei Pang, Lan Huang, and Zhe Wang. "A Novel Diversity Measure for Understanding Movie Ranks in Movie Collaboration Networks." In Advances in Knowledge Discovery and Data Mining, 750–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_58.
Full textSaraswat, Mala, and Shampa Chakraverty. "Leveraging Movie Recommendation Using Fuzzy Emotion Features." In Data Science and Analytics, 475–83. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8527-7_40.
Full textOstuni, Vito Claudio, Giosia Gentile, Tommaso Di Noia, Roberto Mirizzi, Davide Romito, and Eugenio Di Sciascio. "Mobile Movie Recommendations with Linked Data." In Availability, Reliability, and Security in Information Systems and HCI, 400–415. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40511-2_29.
Full textLakshmi Devi, B., V. Varaswathi Bai, Somula Ramasubbareddy, and K. Govinda. "Sentiment Analysis on Movie Reviews." In Emerging Research in Data Engineering Systems and Computer Communications, 321–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0135-7_31.
Full textDoshi, Pratik, and Wlodek Zadrozny. "Movie Genre Detection Using Topological Data Analysis." In Statistical Language and Speech Processing, 117–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00810-9_11.
Full textLee, Maria R., Tsung Teng Chen, and Ying Shun Cai. "Amalgamating Social Media Data and Movie Recommendation." In Knowledge Management and Acquisition for Intelligent Systems, 141–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42706-5_11.
Full textConference papers on the topic "Movie data"
Nie, Dong, Lingzi Hong, and Tingshao Zhu. "Movie Recommendation Using Unrated Data." In 2013 12th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2013. http://dx.doi.org/10.1109/icmla.2013.70.
Full textRoy, Debashish, and Chen Ding. "Movie Recommendation using YouTube Movie Trailer Data as the Side Information." In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2020. http://dx.doi.org/10.1109/asonam49781.2020.9381349.
Full textTice, Bradley S. "Compressed data for the movie industry." In SPIE OPTO, edited by Guifang Li. SPIE, 2013. http://dx.doi.org/10.1117/12.2035187.
Full textAhmad, Javaria, Prakash Duraisamy, Amr Yousef, and Bill Buckles. "Movie success prediction using data mining." In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2017. http://dx.doi.org/10.1109/icccnt.2017.8204173.
Full textLi, Min, Chunfang Li, and Minyong Shi. "Movie Data Visualization Based on WebGL." In 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). IEEE, 2021. http://dx.doi.org/10.1109/snpdwinter52325.2021.00023.
Full textLiu, Ye, Jiawei Zhang, Chenwei Zhang, and Philip S. Yu. "Data-driven Blockbuster Planning on Online Movie Knowledge Library." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622316.
Full textXie, Yuxiang, Xidao Luan, Jingmeng He, Lili Zhang, Xin Zhang, and Chen Li. "A Movie Summary Generation System." In 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). IEEE, 2017. http://dx.doi.org/10.1109/dsc.2017.96.
Full textSinha, Ankit A., S. V. Vamsi Krishna, Rajashree Shedge, and Avi Sinha. "Movie production investment decision system." In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, 2017. http://dx.doi.org/10.1109/icecds.2017.8390215.
Full textLi, Xiaoyue, Haonan Zhao, Zhuo Wang, and Zhezhou Yu. "Research on Movie Rating Prediction Algorithms." In 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020. http://dx.doi.org/10.1109/icbda49040.2020.9101282.
Full textYuMin, Su, Zhang Yuan, and Yan JinYao. "Neural Network Based Movie Rating Prediction." In ICBDC '18: 2018 International Conference on Big Data and Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3220199.3220204.
Full textReports on the topic "Movie data"
Robertson, D. W. Use of a distributed movie-making system for presentation of fluid flow data. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/5921002.
Full textRogers, G. D., and B. K. Kerans. A system of computer programs (WAT{_}MOVE) for transferring data among data bases in the US Geological Survey National Water Information System. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/138226.
Full textPeck, H., and I. Gomez. Imaging Materials Using Movie Mode Dynamic Transmission Electron Microscopes Final Report CRADA No. TC02184.0 Date Technical Work Ended: February 1st, 2014. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1771027.
Full textGowdy, M. J., M. P. Smits, P. L. Wilkey, and S. F. Miller. Data summary report on short-term turbidity monitoring of pipeline river crossings in the Moyie River, Boundary County, Idaho: PGT-PG&E Pipeline Expansion Project. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10161518.
Full textLasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Full textCoulson, Saskia, Melanie Woods, Drew Hemment, and Michelle Scott. Report and Assessment of Impact and Policy Outcomes Using Community Level Indicators: H2020 Making Sense Report. University of Dundee, 2017. http://dx.doi.org/10.20933/100001192.
Full textPatterns and implications of male migration for HIV prevention strategies in Karnataka, India. Population Council, 2008. http://dx.doi.org/10.31899/hiv16.1004.
Full text