Academic literature on the topic 'Movie recommendation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Movie recommendation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Movie recommendation"
Shishodia, Dinesh. "Movie Recommendation System." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 4919–24. http://dx.doi.org/10.22214/ijraset.2021.35929.
Full textManavi, Vallari, Anjali Diwate, Priyanka Korade, and Anita Senathi. "MoView Engine : An Open Source Movie Recommender." ITM Web of Conferences 32 (2020): 03008. http://dx.doi.org/10.1051/itmconf/20203203008.
Full textLi, Bo, Yibin Liao, and Zheng Qin. "Precomputed Clustering for Movie Recommendation System in Real Time." Journal of Applied Mathematics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/742341.
Full textB, Adithya. "Movie Recommendation System." International Journal for Research in Applied Science and Engineering Technology 8, no. 11 (November 30, 2020): 120–22. http://dx.doi.org/10.22214/ijraset.2020.32064.
Full text., Darshini M., Abishay Raina ., Rakshit Mysore Lokesh ., Mohammed Noorulla Khan Durrani ., and T. H. Sreenivas . "MOVIE RECOMMENDATION SYSTEM." International Journal of Engineering Applied Sciences and Technology 03, no. 11 (March 31, 2019): 39–41. http://dx.doi.org/10.33564/ijeast.2019.v03i11.008.
Full textRaj, Kunal, Atulya Abhinav Das, Antariksh Guha, Parth Sharma, and Mohana Kumar S. "Movie Recommendation System." International Journal of Computer Sciences and Engineering 7, no. 4 (April 30, 2019): 1024–28. http://dx.doi.org/10.26438/ijcse/v7i4.10241028.
Full textVerma, Rupal. "Movie Recommendation System by Using Collaborative Filtering." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 888–92. http://dx.doi.org/10.22214/ijraset.2021.38084.
Full textKomurlekar, Runali. "Movie Recommendation Model from Data through Online Streaming." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 1549–51. http://dx.doi.org/10.22214/ijraset.2021.37495.
Full textLiu, Duen-Ren, Yun-Cheng Chou, and Ciao-Ting Jian. "Integrating collaborative topic modeling and diversity for movie recommendations during news browsing." Kybernetes 49, no. 11 (November 27, 2019): 2633–49. http://dx.doi.org/10.1108/k-08-2019-0578.
Full textIbrahim, Muhammad, and Imran Bajwa. "Design and Application of a Multi-Variant Expert System Using Apache Hadoop Framework." Sustainability 10, no. 11 (November 19, 2018): 4280. http://dx.doi.org/10.3390/su10114280.
Full textDissertations / Theses on the topic "Movie recommendation"
Bhargav, Suvir. "Efficient Features for Movie Recommendation Systems." Thesis, KTH, Kommunikationsteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155137.
Full textKirmemis, Oznur. "Openmore: A Content-based Movie Recommendation System." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609479/index.pdf.
Full textCakiroglu, Seda. "Suggest Me A Movie: A Multi-client Movie Recommendation Application On Facebook." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612084/index.pdf.
Full textLarsson, Carl-Johan. "Movie Recommendation System Using Large Scale Graph-Processing." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200601.
Full textKaraman, Hilal. "A Content Based Movie Recommendation System Empowered By Collaborative Missing Data Prediction." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612037/index.pdf.
Full textWhich one should I choose?&rdquo
arises in their minds. Recommendation Systems address the problem of getting confused about items to choose, and filter a specific type of information with a specific information filtering technique that attempts to present information items that are likely of interest to the user. A variety of information filtering techniques have been proposed for performing recommendations, including content-based and collaborative techniques which are the most commonly used approaches in recommendation systems. This thesis work introduces ReMovender, a content-based movie recommendation system which is empowered by collaborative missing data prediction. The distinctive point of this study lies in the methodology used to correlate the users in the system with one another and the usage of the content information of movies. ReMovender makes it possible for the users to rate movies in a scale from one to five. By using these ratings, it finds similarities among the users in a collaborative manner to predict the missing ratings data. As for the content-based part, a set of movie features are used in order to correlate the movies and produce recommendations for the users.
Ozbal, Gozde. "A Content Boosted Collaborative Filtering Approach For Movie Recommendation Based On Local &." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610984/index.pdf.
Full texts world, many systems and approaches make it possible for the users to be guided by the recommendations that they provide about new items such as articles, news, books, music, and movies. However, a lot of traditional recommender systems result in failure when the data to be used throughout the recommendation process is sparse. In another sense, when there exists an inadequate number of items or users in the system, unsuccessful recommendations are produced. Within this thesis work, ReMovender, a web based movie recommendation system, which uses a content boosted collaborative filtering approach, will be presented. ReMovender combines the local/global similarity and missing data prediction v techniques in order to handle the previously mentioned sparseness problem effectively. Besides, by putting the content information of the movies into consideration during the item similarity calculations, the goal of making more successful and realistic predictions is achieved.
Song, Philip, and André Brogärd. "Performance Analysis of Various Activation Functions Using LSTM Neural Network For Movie Recommendation Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280451.
Full textRekommendationssystem har ökat i betydelse och popularitet i många olika områden. Denna avhandling fokuserar på rekommendationssystem för filmer. Recurrent neurala nätverk med LSTM blocks har visat viss framgång för rekommendationssystem för filmer. Tidigare forskning har indikerat att en ändring av aktiverings funktioner har resulterat i förbättrad prediktering. I denna studie jämför vi fyra olika aktiveringsfunktioner (hyperbolic tangent, sigmoid, ELU and SELU) som appliceras i LSTM blocks och hur de påverkar predikteringen i det neurala nätverket. De appliceras specifikt på block input och block output av LSTM blocken. Våra resultat indikerar att den hyperboliska tangentfunktionen, som är standardvalet, och sigmoid funktionen presterar lika, men ELU och SELU presterar båda sämre. Ytterligare forskning krävs för att indentifiera andra aktiveringsfunktioner och för att förbättra flera delar av metodologin.
Lokesh, Ashwini. "A Comparative Study of Recommendation Systems." TopSCHOLAR®, 2019. https://digitalcommons.wku.edu/theses/3166.
Full textDeirmenci, Hazim. "Enabling Content Discovery in an IPTV System : Using Data from Online Social Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200922.
Full textInternet Protocol television (IPTV) är ett sätt att leverera tv via Internet, vilket möjliggör tvåvägskommunikation mellan en operatör och dess användare. Genom att använda IPTV har användare friheten att välja vilket innehåll de vill konsumera och när de vill konsumera det. Användare har t.ex. möjlighet att titta på tv program efter att de har sänts på tv, och de kan komma åt innehåll som inte är en del av någon linjär tv-sändning, t.ex. filmer som är tillgängliga att hyra. Detta betyder att användare, genom att använda IPTV, kan få tillgång till mer videoinnhåll än vad som är möjligt med traditionella tv-distributionsformat. Att ha fler valmöjligheter innebär dock även att det blir svårare att bestämma sig för vad man ska titta på, och det är viktigt att IPTV-leverantörer underlättar processen att hitta intressant innehåll så att användarna finner värde i att använda deras tjänster. I detta exjobb undersökte författaren hur en användares sociala nätverk på Internet kan användas som grund för att underlätta upptäckandet av intressanta filmer i en IPTV miljö. Undersökningen bestod av två delar, en teoretisk och en praktisk. I den teoretiska delen genomfördes en litteraturstudie för att få kunskap om olika rekommendationssystemsstrategier. Utöver litteraturstudien identifierades ett antal sociala nätverk på Internet som studerades empiriskt för att få kunskap om vilken data som är möjlig att hämta in från dem och hur datan kan inhämtas. I den praktiska delen utformades och byggdes en prototyp av ett s.k. content discovery system (“system för att upptäcka innehåll”), som använde sig av den insamlade datan. Detta gjordes för att exponera svårigheter som finns med att implementera ett sådant system. Studien visar att, även om det är möjligt att samla in data från olika sociala nätverk på Internet så erbjuder inte alla data i en form som är lätt att använda i ett content discovery system. Av de undersökta sociala nätverkstjänsterna visade det sig att Facebook erbjuder data som är lättast att samla in och använda. Det största hindret, ur ett tekniskt perspektiv, visade sig vara matchningen av filmtitlar som inhämtats från den sociala nätverkstjänsten med filmtitlarna i IPTV-leverantörens databas; en anledning till detta är att filmer kan ha titlar på olika språk.
Hinas, Toni, and Isabelle Ton. "Recommender Systems for Movie Recommendations." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239376.
Full textBooks on the topic "Movie recommendation"
Great Britain. Conveyancing Standard Committee. Getting the money to move: Avoiding completion delays : recommendations of the Conveyancing Standard Committee of the Law Commission. London: Law Commission, 1989.
Find full textDe Jong, Bart A., David P. Kroon, and Oliver Schilke. The Future of Organizational Trust Research. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190630782.003.0010.
Full textBergeron, Diane M., Chantal van Esch, and Phillip S. Thompson. Citizenship Behavior and Objective Career Outcomes: A Review and Agenda for Future Work. Edited by Philip M. Podsakoff, Scott B. Mackenzie, and Nathan P. Podsakoff. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190219000.013.9.
Full textYoung, Susan M. Financial Analysts. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190269999.003.0007.
Full textBalanzá-Martínez, Vicent, Sofia Brissos, Maria Lacruz, and Rafael Tabarés-Seisdedos. Pharmacotherapy of bipolar disorder: impact on neurocognition. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198748625.003.0025.
Full textVandenberg, Martina. Peacekeeping, Human Trafficking, and Sexual Abuse and Exploitation. Edited by Fionnuala Ní Aoláin, Naomi Cahn, Dina Francesca Haynes, and Nahla Valji. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199300983.013.32.
Full textGoldenberg, Don. COVID's Impact on Health and Healthcare Workers. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780197575390.001.0001.
Full textBurrus, Jeremy, Krista Mattern, Bobby D. Naemi, and Richard D. Roberts. Building Better Students. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199373222.001.0001.
Full textDoucerain, Marina, Norman Segalowitz, and Andrew G. Ryder. Acculturation Measurement. Edited by Seth J. Schwartz and Jennifer Unger. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190215217.013.7.
Full textJack, Gavin. Advancing Postcolonial Approaches in Critical Diversity Studies. Edited by Regine Bendl, Inge Bleijenbergh, Elina Henttonen, and Albert J. Mills. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199679805.013.3.
Full textBook chapters on the topic "Movie recommendation"
Lekakos, George, Matina Charami, and Petros Caravelas. "Personalized Movie Recommendation." In Handbook of Multimedia for Digital Entertainment and Arts, 3–26. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-89024-1_1.
Full textRajarajeswari, S., Sharat Naik, Shagun Srikant, M. K. Sai Prakash, and Prarthana Uday. "Movie Recommendation System." In Emerging Research in Computing, Information, Communication and Applications, 329–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5953-8_28.
Full textTang, Song, Zhiyong Wu, and Kang Chen. "Movie Recommendation via BLSTM." In MultiMedia Modeling, 269–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51814-5_23.
Full textKo, Sang-Ki, Sang-Min Choi, Hae-Sung Eom, Jeong-Won Cha, Hyunchul Cho, Laehyum Kim, and Yo-Sub Han. "A Smart Movie Recommendation System." In Lecture Notes in Computer Science, 558–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21793-7_63.
Full textPadhi, Ashis Kumar, Ayog Mohanty, and Sipra Sahoo. "FindMoviez: A Movie Recommendation System." In Intelligent Systems, 49–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6081-5_5.
Full textFarinella, Tania, Sonia Bergamaschi, and Laura Po. "A Non-intrusive Movie Recommendation System." In On the Move to Meaningful Internet Systems: OTM 2012, 736–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33615-7_19.
Full textJain, Kartik Narendra, Vikrant Kumar, Praveen Kumar, and Tanupriya Choudhury. "Movie Recommendation System: Hybrid Information Filtering System." In Intelligent Computing and Information and Communication, 677–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7245-1_66.
Full textLee, Maria R., Tsung Teng Chen, and Ying Shun Cai. "Amalgamating Social Media Data and Movie Recommendation." In Knowledge Management and Acquisition for Intelligent Systems, 141–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42706-5_11.
Full textSaraswat, Mala, and Shampa Chakraverty. "Leveraging Movie Recommendation Using Fuzzy Emotion Features." In Data Science and Analytics, 475–83. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8527-7_40.
Full textAhn, Shinhyun, and Chung-Kon Shi. "Exploring Movie Recommendation System Using Cultural Metadata." In Transactions on Edutainment II, 119–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03270-7_9.
Full textConference papers on the topic "Movie recommendation"
Subramaniam, Rajan, Roger Lee, and Tokuro Matsuo. "Movie Master: Hybrid Movie Recommendation." In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2017. http://dx.doi.org/10.1109/csci.2017.56.
Full textLiu, Anan, Yongdong Zhang, and Jintao Li. "Personalized movie recommendation." In the seventeen ACM international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1631272.1631429.
Full textSharma, Nisha, and Mala Dutta. "Movie Recommendation Systems." In ICCCM'20: 2020 The 8th International Conference on Computer and Communications Management. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3411174.3411194.
Full textHalder, Sajal, A. M. Jehad Sarkar, and Young-Koo Lee. "Movie Recommendation System Based on Movie Swarm." In 2012 International Conference on Cloud and Green Computing (CGC). IEEE, 2012. http://dx.doi.org/10.1109/cgc.2012.121.
Full textHalder, Sajal, Md Samiullah, A. M. Jehad Sarkar, and Young-Koo Lee. "Movie swarm: Information mining technique for movie recommendation system." In 2012 7th International Conference on Electrical & Computer Engineering (ICECE). IEEE, 2012. http://dx.doi.org/10.1109/icece.2012.6471587.
Full textPathak, Dharmendra, S. Matharia, and C. N. S. Murthy. "ORBIT: Hybrid movie recommendation engine." In 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN). IEEE, 2013. http://dx.doi.org/10.1109/ice-ccn.2013.6528589.
Full textNie, Dong, Lingzi Hong, and Tingshao Zhu. "Movie Recommendation Using Unrated Data." In 2013 12th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2013. http://dx.doi.org/10.1109/icmla.2013.70.
Full textXu, Zhe, and Ya Zhang. "Automatic generated recommendation for movie trailers." In 2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2013. http://dx.doi.org/10.1109/bmsb.2013.6621738.
Full textKapoor, Nimish, Saurav Vishal, and Krishnaveni K. S. "Movie Recommendation System Using NLP Tools." In 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2020. http://dx.doi.org/10.1109/icces48766.2020.9137993.
Full textMaheshwari, Ankit, Anuradha Kumari, Anjali Kumari, Neeraj Kumar, and Nandini B M. "Movie Recommendation System using Apache Spark." In 3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics. AIJR Publisher, 2018. http://dx.doi.org/10.21467/proceedings.1.45.
Full textReports on the topic "Movie recommendation"
Golbeck, Jennifer. Generating Predictive Movie Recommendations from Trust in Social Networks. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada447900.
Full textAiginger, Karl, Andreas Reinstaller, Michael Böheim, Rahel Falk, Michael Peneder, Susanne Sieber, Jürgen Janger, et al. Evaluation of Government Funding in RTDI from a Systems Perspective in Austria. Synthesis Report. WIFO, Austria, August 2009. http://dx.doi.org/10.22163/fteval.2009.504.
Full textSowa, Patience, Rachel Jordan, Wendi Ralaingita, and Benjamin Piper. Higher Grounds: Practical Guidelines for Forging Learning Pathways in Upper Primary Education. RTI Press, May 2021. http://dx.doi.org/10.3768/rtipress.2021.op.0069.2105.
Full textCoulson, Saskia, Melanie Woods, Drew Hemment, and Michelle Scott. Report and Assessment of Impact and Policy Outcomes Using Community Level Indicators: H2020 Making Sense Report. University of Dundee, 2017. http://dx.doi.org/10.20933/100001192.
Full textHEFNER, Robert. IHSAN ETHICS AND POLITICAL REVITALIZATION Appreciating Muqtedar Khan’s Islam and Good Governance. IIIT, October 2020. http://dx.doi.org/10.47816/01.001.20.
Full textDigital Health Implementation Guide for the Pacific. Asian Development Bank, June 2021. http://dx.doi.org/10.22617/tim210178-2.
Full text