Academic literature on the topic 'MOX Gas sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MOX Gas sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MOX Gas sensor"

1

Abdullah, Abdulnasser Nabil, Kamarulzaman Kamarudin, Latifah Munirah Kamarudin, Abdul Hamid Adom, Syed Muhammad Mamduh, Zaffry Hadi Mohd Juffry, and Victor Hernandez Bennetts. "Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity." Sensors 22, no. 9 (April 26, 2022): 3301. http://dx.doi.org/10.3390/s22093301.

Full text
Abstract:
For decades, Metal oxide (MOX) gas sensors have been commercially available and used in various applications such as the Smart City, gas monitoring, and safety due to advantages such as high sensitivity, a high detection range, fast reaction time, and cost-effectiveness. However, several factors affect the sensing ability of MOX gas sensors. This article presents the results of a study on the cross-sensitivity of MOX gas sensors toward ambient temperature and humidity. A gas sensor array consisting of temperature and humidity sensors and four different MOX gas sensors (MiCS-5524, GM-402B, GM-502B, and MiCS-6814) was developed. The sensors were subjected to various relative gas concentrations, temperatures (from 16 °C to 30 °C), and humidity levels (from 75% to 45%), representing a typical indoor environment. The results proved that the gas sensor responses were significantly affected by the temperature and humidity. The increased temperature and humidity levels led to a decreased response for all sensors, except for MiCS-6814, which showed the opposite response. Hence, this work proposed regression models for each sensor, which can correct the gas sensor response drift caused by the ambient temperature and humidity variations. The models were validated, and the standard deviations of the corrected sensor response were found to be 1.66 kΩ, 13.17 kΩ, 29.67 kΩ, and 0.12 kΩ, respectively. These values are much smaller compared to the raw sensor response (i.e., 18.22, 24.33 kΩ, 95.18 kΩ, and 2.99 kΩ), indicating that the model provided a more stable output and minimised the drift. Overall, the results also proved that the models can be used for MOX gas sensors employed in the training process, as well as for other sets of gas sensors.
APA, Harvard, Vancouver, ISO, and other styles
2

Norzam, Wan Abdul Syaqur, Huzein Fahmi Hawari, Kamarulzaman Kamarudin, Zaffry Hadi Mohd Juffry, Nurul Athirah Abu Hussein, Monika Gupta, and Abdulnasser Nabil Abdullah. "Mobile Robot Gas Source Localization Using SLAM-GDM with a Graphene-Based Gas Sensor." Electronics 12, no. 1 (December 30, 2022): 171. http://dx.doi.org/10.3390/electronics12010171.

Full text
Abstract:
Mobile olfaction is one of the applications of mobile robots. Metal oxide sensors (MOX) are mobile robots’ most popular gas sensors. However, the sensor has drawbacks, such as high-power consumption, high operating temperature, and long recovery time. This research compares a reduced graphene oxide (RGO) sensor with the traditionally used MOX in a mobile robot. The method uses a map created from simultaneous localization and mapping (SLAM) combined with gas distribution mapping (GDM) to draw the gas distribution in the map and locate the gas source. RGO and MOX are tested in the lab for their response to 100 and 300 ppm ethanol. Both sensors’ response and recovery times show that RGO resulted in 56% and 54% faster response times, with 33% and 57% shorter recovery times than MOX. In the experiment, one gas source, 95% ethanol solution, is placed in the lab, and the mobile robot runs through the map in 7 min and 12 min after the source is set, with five repetitions. The results show the average distance error of the predicted source from the actual location was 19.52 cm and 30.28 cm using MOX and 25.24 cm and 30.60 cm using the RGO gas sensor for the 7th and 12th min trials, respectively. The errors show that the predicted gas source location based on MOX is 1.0% (12th min), much closer to the actual site than that predicted with RGO. However, RGO also shows a larger gas sensing area than MOX by 0.35–8.33% based on the binary image of the SLAM-GDM map, which indicates that RGO is much more sensitive than MOX in the trial run. Regarding power consumption, RGO consumes an average of 294.605 mW, 56.33% less than MOX, with an average consumption of 674.565 mW. The experiment shows that RGO can perform as well as MOX in mobile olfaction applications but with lower power consumption and operating temperature.
APA, Harvard, Vancouver, ISO, and other styles
3

Müller, Gerhard, and Giorgio Sberveglieri. "Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration." Chemosensors 10, no. 5 (May 2, 2022): 171. http://dx.doi.org/10.3390/chemosensors10050171.

Full text
Abstract:
Metal oxide (MOX) gas sensors and gas sensor arrays are widely used to detect toxic, combustible, and corrosive gases and gas mixtures inside ambient air. Important but poorly researched effects counteracting reliable detection are the phenomena of sensor baseline drift and changes in gas response upon long-term operation of MOX gas sensors. In this paper, it is shown that baseline drift is not limited to materials with poor crystallinity, but that this phenomenon principally also occurs in materials with almost perfect crystalline order. Building on this result, a theoretical framework for the analysis of such phenomena is developed. This analysis indicates that sensor drift is caused by the slow annealing of quenched-in non-equilibrium oxygen-vacancy donors as MOX gas sensors are operated at moderate temperatures for prolonged periods of time. Most interestingly, our analysis predicts that sensor drift in n-type MOX materials can potentially be mitigated or even suppressed by doping with metal impurities with chemical valences higher than those of the core metal constituents of the host crystals.
APA, Harvard, Vancouver, ISO, and other styles
4

Samotaev, Nikolay, Konstantin Oblov, Anastasia Ivanova, Boris Podlepetsky, Nikolay Volkov, and Nazar Zibilyuk. "Technology for SMD Packaging MOX Gas Sensors." Proceedings 2, no. 13 (November 30, 2018): 934. http://dx.doi.org/10.3390/proceedings2130934.

Full text
Abstract:
The perspective combination of laser micromilling technology and jet (aerosol) printing technologies for ceramic MEMS producing of microhotplate in the surface mounted device (SMD) package for the metal oxide (MOX) sensor is describing. There are discusses technological and economic aspects of small-scale production of gas MOX sensors. Experiments with laser micromilling of Al2O3 ceramics confirmed possibility to produce MEMS microhotplate for MOX gas sensor in SMD package with form-factor SOT-23. Developed technology process is close to 3D prototype philosophy—rapid, simple and cheap.
APA, Harvard, Vancouver, ISO, and other styles
5

Samotaev, Nikolay, Konstantin Oblov, and Anastasia Ivanova. "Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices." MATEC Web of Conferences 207 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820704003.

Full text
Abstract:
The flexible laser micromilling technology for ceramic MEMS producing of microhotplate in the surface mounted device (SMD) package for the metal oxide (MOX) gas sensors is describing. There are discusses technological and economic aspects of small-scale production of gas MOX sensors in comparison with classical clean room technologies using for mass production MEMS devices. The main technical factors affecting on using MOX sensors in various applications are presented. Current results demonstrate that using described technology possible to manufacturing all parts of MOX gas sensor in the SMD form-factor SOT-23 package type.
APA, Harvard, Vancouver, ISO, and other styles
6

Martinez, Burgués, and Marco. "Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution." Sensors 19, no. 18 (September 18, 2019): 4029. http://dx.doi.org/10.3390/s19184029.

Full text
Abstract:
Metal oxide (MOX) sensors are widely used for chemical sensing due to their low cost, miniaturization, low power consumption and durability. Yet, getting instantaneous measurements of fluctuating gas concentration in turbulent plumes is not possible due to their slow response time. In this paper, we show that the slow response of MOX sensors can be compensated by deconvolution, provided that an invertible, parametrized, sensor model is available. We consider a nonlinear, first-order dynamic model that is mathematically tractable for MOX identification and deconvolution. By transforming the sensor signal in the log-domain, the system becomes linear in the parameters and these can be estimated by the least-squares techniques. Moreover, we use the MOX diversity in a sensor array to avoid training with a supervised signal. The information provided by two (or more) sensors, exposed to the same flow but responding with different dynamics, is exploited to recover the ground truth signal (gas input). This approach is known as blind deconvolution. We demonstrate its efficiency on MOX sensors recorded in turbulent plumes. The reconstructed signal is similar to the one obtained with a fast photo-ionization detector (PID). The technique is thus relevant to track a fast-changing gas concentration with MOX sensors, resulting in a compensated response time comparable to that of a PID.
APA, Harvard, Vancouver, ISO, and other styles
7

Francioso, Luca, Pasquale Creti, Maria Concetta Martucci, Simonetta Capone, Antonietta Taurino, Pietro Siciliano, and Chiara De Pascali. "100 nm-Gap Fingers Dielectrophoresis Functionalized MOX Gas Sensor Array for Low Temperature VOCs Detection." Proceedings 2, no. 13 (November 13, 2018): 1027. http://dx.doi.org/10.3390/proceedings2131027.

Full text
Abstract:
Present work reports the fabrication process and functional gas sensing tests of a 100 nm-gap fingers DiElectroPhoresis (DEP) functionalized MOX (Metal OXide) gas sensor array for VOCs detection at low temperature. The Internet of Things (IoT) scenario applications of the chemical sensing-enabled mobiles or connected devices are many ranging from indoor air quality to novel breath analyser for personal healthcare monitoring. However, the commercial MOX gas sensors operate at moderate temperatures (200–400 °C) [1], and this limits the mobile and wearable gadgets market penetration. Nanogap devices may represent the alternative devices with enhanced sensitivity even at low or room temperature. A nanogap electrodes MOX gas sensor array functionalized with 5 nm average size SnO2 nanocrystals with positive dielectrophoresis technique is presented. The single sensor active area is 4 × 4 µm2. The devices exhibited about 1 order of magnitude response at 100 °C to 150 ppm of acetone.
APA, Harvard, Vancouver, ISO, and other styles
8

Wen, Wei-Chih, Ting-I. Chou, and Kea-Tiong Tang. "A Gas Mixture Prediction Model Based on the Dynamic Response of a Metal-Oxide Sensor." Micromachines 10, no. 9 (September 11, 2019): 598. http://dx.doi.org/10.3390/mi10090598.

Full text
Abstract:
Metal-oxide (MOX) gas sensors are widely used for gas concentration estimation and gas identification due to their low cost, high sensitivity, and stability. However, MOX sensors have low selectivity to different gases, which leads to the problem of classification for mixtures and pure gases. In this study, a square wave was applied as the heater waveform to generate a dynamic response on the sensor. The information of the dynamic response, which includes different characteristics for different gases due to temperature changes, enhanced the selectivity of the MOX sensor. Moreover, a polynomial interaction term mixture model with a dynamic response is proposed to predict the concentration of the binary mixtures and pure gases. The proposed method improved the classification accuracy to 100%. Moreover, the relative error of quantification decreased to 1.4% for pure gases and 13.0% for mixtures.
APA, Harvard, Vancouver, ISO, and other styles
9

Palacín, Jordi, Elena Rubies, Eduard Clotet, and David Martínez. "Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors." Sensors 22, no. 3 (February 1, 2022): 1120. http://dx.doi.org/10.3390/s22031120.

Full text
Abstract:
The artificial replication of an olfactory system is currently an open problem. The development of a portable and low-cost artificial olfactory system, also called electronic nose or eNose, is usually based on the use of an array of different gas sensors types, sensitive to different target gases. Low-cost Metal-Oxide semiconductor (MOX) gas sensors are widely used in such arrays. MOX sensors are based on a thin layer of silicon oxide with embedded heaters that can operate at different temperature set points, which usually have the disadvantages of different volatile sensitivity in each individual sensor unit and also different crossed sensitivity to different volatiles (unspecificity). This paper presents and eNose composed by an array of 16 low-cost BME680 digital miniature sensors embedding a miniature MOX gas sensor proposed to unspecifically evaluate air quality. In this paper, the inherent variability and unspecificity that must be expected from the 16 embedded MOX gas sensors, combined with signal processing, are exploited to classify two target volatiles: ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of the 16 embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The validation results have shown an instantaneous classification success higher than 94% two days after the calibration and higher than 70% two weeks after, so the majority classification of a sequence of measures has been always successful in laboratory conditions. These first validation results and the low-power consumption of the eNose (0.9 W) enables its future improvement and its use in portable and battery-operated applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Palacín, Jordi, Eduard Clotet, and Elena Rubies. "Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles." Chemosensors 10, no. 3 (March 19, 2022): 118. http://dx.doi.org/10.3390/chemosensors10030118.

Full text
Abstract:
This paper assesses the over time performance of a custom electronic nose (eNose) composed of an array of commercial low-cost and single-type miniature metal-oxide (MOX) semiconductor gas sensors. The eNose uses 16 BME680 versatile sensor devices, each including an embedded non-selective MOX gas sensor that was originally proposed to measure the total volatile organic compounds (TVOC) in the air. This custom eNose has been used previously to detect ethanol and acetone, obtaining initial promising classification results that worsened over time because of sensor drift. The current paper assesses the over time performance of different classification methods applied to process the information gathered from the eNose. The best classification results have been obtained when applying a linear discriminant analysis (LDA) to the normalized conductance of the sensing layer of the 16 MOX gas sensors available in the eNose. The LDA procedure by itself has reduced the influence of drift in the classification performance of this single-type eNose during an evaluation period of three months.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "MOX Gas sensor"

1

Priščák, Juraj. "Charakterizace senzitivních nanomateriálů pro MOX senzory plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442521.

Full text
Abstract:
This thesis deals with one-dimensional (1D) and two-dimensional nanomaterials (2D) in terms of their utilization for new types of gas sensors. Thesis focuses on study of sensing elements for gas sensors based on semiconductor metal oxide materials (MOX) and their manufacturing technology. The objective of the thesis is the design and implementation of a sensing elements formed by selected nanomaterials based on the structure of interdigital electrodes. The result of the practical part of the thesis is the characterization and comparison of materials in terms of their detection parameters in the presence of selected test gases. The first part of thesis hierarchically defines chemoresistive gas sensor, characterizes and explains its operation principle. Second part studies 1D and 2D nanomaterials of sensing elements for MOX chemoresistive gas sensors, contains a research of their properties and describes their methods of manufacturing and implementation. The last part deals with the implementation of the sensitive layer of the sensor with selected nanomaterials, characterizes and compares their detection properties.
APA, Harvard, Vancouver, ISO, and other styles
2

CICIOTTI, FULVIO. "Oscillator-Based CMOS Readout Interfaces for Gas Sensing Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241089.

Full text
Abstract:
Il rilevamento di gas tossici e pericolosi è sempre stato necessario per motivi di sicurezza. Negli ultimi anni, in particolare, l’attenzione per lo sviluppo di sistemi portatili e a basso costo per il rilevamento dei gas è aumentata notevolmente. Questa tesi presenta circuiti CMOS versatili, veloci, ad alta precisione e basso consumo per applicazioni portatili di rilevamento di gas. I sensori target sono i Metal Oxide Semiconductor (MOX). Questi sensori sono ampiamente utilizzati per la loro intrinseca compatibilità con le tecnologie MEMS integrate. Le tipologie di lettura scelte sono basate su un oscillatore controllato dalla resistenza del sensore stessa, in modo da ottenere una conversione resistenza-tempo. Ciò garantisce un ampio range dinamico, una buona precisione e la capacità di far fronte alle grandi variazioni di resistenza del sensore MOX. Quattro diversi prototipi sono stati sviluppati e testati con successo. Sono state anche eseguite misurazioni chimiche con un vero sensore SnO2 MOX, validando i risultati ottenuti. Le misure hanno mostrato come il sensore e l’interfaccia sia in grado di rilevare fino a 5ppm di CO in aria. Gli ASIC sono in grado di coprire 128 dB di DR a 4Hz di output data rate digitale, o 148 dB a 0.4Hz, garantendo un errore relativo percentuale sempre migliore dello 0,4% (SNDR> 48 dB). Le prestazioni target sono state raggiunte con aggressive strategie di progettazione e ottimizzazione a livello di sistema. È stata utilizzata una tecnologia CMOS a 130nm fornita da Infineon Technologies AG. La scelta di un nodo tecnologico così scalato (rispetto alle tipiche implementazioni in questo settore) ha consentito di ridurre ulteriormente i consumi fino a circa 450 μA. Inoltre, questo lavoro introduce la possibilità di utilizzare la stessa architettura basata su oscillatore per eseguire la lettura di sensori capacitivi. I risultati delle misurazioni con sensori capacitivi MEMS hanno mostrato 116 dB di DR, con un SNR di 74 dB a 10Hz di velocità di trasmissione dati digitale. Le architetture sviluppate in questa tesi sono compatibili con gli standard moderni nel settore del rilevamento del gas per dispositivi portatili.
Detection of toxic and dangerous gases has always been a need for safety purpose and, in recent years, portable and low-cost gas sensing systems are becoming of main interest. This thesis presents fast, high precision, low-power, versatile CMOS interface circuits for portable gas sensing applications. The target sensors are Metal Oxide Semiconductor (MOX) sensors which are widely used due to their inherent compatibility with integrated MEMS technologies. The chosen readout typologies are based on the time-domain Resistor-Controlled Oscillator. This guarantees wide dynamic range, good precision and the ability to cope with the large MOX sensor resistance variations. Four different prototypes have been successfully developed and tested. Chemical measurements with a real SnO2 MOX sensor have also been performed to validate the results, showing a minimum CO detection capability in ambient air of 5 ppm. The ASICs are able to cover 128 dB of DR at 4 Hz of digital output data rate, or 148 dB at 0.4 Hz, while providing a relative error always better than 0.4% (SNDR >48 dB). Target performances have been achieved with aggressive design strategies and system-level optimization, and using a scaled (compared to typical implementations in this field) 130nm CMOS technology provided by Infineon Technologies AG. Power consumption is about 450 μA. Moreover, this work introduces the possibility to use the same oscillator-based architecture to perform capacitive sensors readout. Measurement results with capacitive MEMS sensors have shown 116 dB of DR in CSENS mode, with an SNR of 74 dB at 10 Hz of digital output data rate. The architectures developed in this thesis are compatible with the modern standards in the portable gas sensing industry.
APA, Harvard, Vancouver, ISO, and other styles
3

KRIK, Soufiane. "Low-operating temperature chemiresistive gas sensors: Fabrication and DFT calculations." Doctoral thesis, Università degli studi di Ferrara, 2021. http://hdl.handle.net/11392/2488099.

Full text
Abstract:
Despite advantages highlighted by Metal OXides (MOX) based gas sensors, these devices still present drawbacks in their performances (e.g. selectivity, stability and high operating temperature), so further investigations are necessary. Researchers tried to address these problems in several ways, which includes new synthesis methods for innovative materials based on MOX, such as solid solutions, addition of catalysts and doping of MOX by using external atoms or oxygen vacancies. Concerning this last issue, literature presents a lack of studies on how the arrangement and number of oxygen vacancies affect the sensing performance and only a few preliminary works highlighted interesting results. Another way to overcome MOX sensor drawbacks is to investigate novel class of materials, such as metal organic framework or 2D materials. Among these, phosphorene is one of the best candidates for such technological application, since it shows a chemoresistive activity at room temperature. The goal of this work is to decrease the operating temperature of SnO2 based gas sensors by exploiting the oxygen vacancies. First, a theoretical investigation was done in the framework of Density Functional Theory (DFT) to investigate, on the atomic scale, how oxygen vacancies influence the physical and chemical properties of the material. The effect of oxygen vacancies on the structural, electronic and electrical properties of bulk SnO2 at two different concentrations was studied, then the formation of surface oxygen vacancies was investigated in order to study the adsorption of oxygen molecules from the surrounding atmosphere on the stoichiometric and reduced SnO2 surface. Then, reduced SnO2-x was synthesized and devices based on the produced material were fabricated and tested. The results showed a high response of the sensors towards low concentrations of nitrogen dioxide NO2 (500 ppb) at 130°C instead of the typical operating temperature of 450°C for SnO2-based gas sensors. This decrease in the operating temperature results in a decrease of the power consumption of the device, opening up to its possible employment on portable devices like mobile phones. The results were interpreted characterizing the material by mean of X-ray Powder Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM) and Ultraviolet–visible spectroscopy (UV-visible) analysis. In the end, the experimental results were compared to the DFT outputs obtained. As mentioned before, phosphorene is one of the promising 2D materials for gas sensing applications, but it still presents some drawbacks, mainly due to the material degradation over the time when exposed to ambient conditions. Many investigations were done on decorating phosphorene with metal atoms in order to enhance its performance for different technological applications. Nickel is one of metals proposed for such purpose, but few studies were done on nickel decorated phosphorene for gas sensing applications, especially for gas sensing application. In the innovative work here proposed, DFT calculations were carried out to explain how nickel influences the electronic properties of phosphorene since the decoration with nickel showed better stability of the sensor and high response towards NO2 at room temperature. The theoretical results explained this behavior by studying the adsorption of oxygen molecules on pristine and nickel loaded phosphorene. The DFT calculations showed that oxygen molecules dissociate on the layer of pristine phosphorene and react with phosphorus atoms (oxidation of the material), while in the presence of the nickel atoms the later play the role of acceptors and interact with the oxygen molecules. Finally, the sensing mechanism towards NO2 was investigated theoretically by studying the charge transfer occurring at the surface of the material during the adsorption process.
I sensori di gas basati sugli ossidi metallici semiconduttori (MOX) si sono rivelati negli ultimi anni una tecnologia estremamente vantaggiosa. Nonostante i progressi fatti in questo campo, questi dispositivi presentano ancora alcuni punti deboliche spingono la ricerca ad effettuare ulteriori indagini per perfezionare il loro funzionamento. I ricercatori hanno cercato di risolvere questi svantaggi in diversi modi, focalizzandosi sullo sviluppo di MOX innovativi, tra cui il drogaggio tramite l’utilizzo di additivi o l’introduzione nel materiale di vacanze di ossigeno a concentrazione controllata. Questa’alternativa sta attirando l’attenzione di molti gruppi di ricerca, anche se, ad oggi, la letteratura scientifica presenta una mancanza di studi su come la disposizione e concentrazione di vacanze di ossigeno influenzano le performance di sensing e solo alcuni lavori preliminari hanno portato a risultati interessanti. Per cercare di ovviare ai limiti dei sensori MOX, una seconda via è stata lo sviluppo e di materiali 2D basati su solfuri metallici, grafene o similari. Il fosforene è uno dei migliori candidati per tale applicazione tecnologica, poiché mostra un'attività elettrica anche a temperatura ambiente, anche se studi preliminari hanno evidenziato un alto tasso di degradazione nel tempo del materiale durante il suo utilizzo. L'obiettivo di questo lavoro è quello di diminuire la temperatura di funzionamento di sensori di gas basati su SnO2 sfruttando il controllo delle vacanze di ossigeno. A tale scopo, è stato fatto inizialmente uno studio della letteratura e un’analisi analitica nell’ambito della DFT per indagare come le vacanze di ossigeno influenzano le proprietà fisico-chimiche del materiale. È stato studiato l'effetto di due diverse concentrazioni di vacanze di ossigeno sulle proprietà chimico-fisiche dello SnO2 bulk. Successivamente è stata studiata la formazione della vacanze in superficie per investigare l'adsorbimento di molecole di ossigeno dall'atmosfera circostante sulla superficie dello SnO2 è stato sintetizzato tramite sintesi sol-gel e la riduzione è stata ottenuta tramite trattamento termico in presenza di H2 a diverse temperature. I risultati hanno mostrato un'alta risposta dei sensori basati su SnO2-x in presenza di basse concentrazioni di NO2 spostando a 130 °C la temperatura ottimale di funzionamento del dispositivo. Questa diminuzione della temperatura operativa implica una diminuzione del consumo energetico del dispositivo Come menzionato precedentemente, il fosforene è uno dei materiali 2D più promettenti per lo sviluppo di sensori di gas chemoresistivi, ma presenta ancora alcuni svantaggi. Molti studi sono stati sviluppati sulla decorazione del fosforene con atomi metallici al fine di migliorare le sue prestazioni per diverse applicazioni tecnologiche, ma non sono stati ancora condotti studi specifici su questa particolare forma di fosforene decorato per applicazioni di sensoristica gassosa. Nello studio qui proposto, sono stati eseguiti calcoli DFT per spiegare come il nichel influenzi le proprietà elettroniche del fosforene, poiché la decorazione con nichel ha mostrato una migliore stabilità del sensore e un’alta sensibilità all’NO2. Tramite simulazione DFT è stato possibile investigare l'adsorbimento delle molecole di ossigeno sul Fosforene tal quale e decorato con nichel. I risultati hanno evidenziato che le molecole di ossigeno si dissociano sullo strato di fosforene tal quale e reagiscono con gli atomi di fosforo, ossidandolo, mentre in presenza dei cluster di nichel è quest’ultimo a svolgere il ruolo di catalizzatore, interagendo con le molecole di ossigeno. Infine, il meccanismo di interazione tra NO2 e la superficie del fosforene tal quale e funzionalizzato è stato caratterizzato teoricamente studiando il trasferimento di carica che avviene sulla superficie del materiale in esame.
APA, Harvard, Vancouver, ISO, and other styles
4

Malaver, Rojas Jairo Alexander. "Development of gas sensing technology for ground and airborne applications powered by solar energy : methodology and experimental results." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/74644/1/74644.pdf.

Full text
Abstract:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
APA, Harvard, Vancouver, ISO, and other styles
5

Alolaywi, Haidar. "Electrochemical MoOx/Carbon Nanocomposite Gas Sensor for Formaldehyde Detection at Room Temperature." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596821142716346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Magalhães, Filipe Bento. "Capacitor MOS aplicado em sensor de imagem química." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-06072014-230841/.

Full text
Abstract:
O desenvolvimento de sensores em sistemas para controle ambiental tem-se mostrado uma área de elevado interesse científico e técnico. Os principais desafios nesta área estão relacionados ao desenvolvimento de sensores com capacidade de detecção de várias substâncias. Neste contexto, os capacitores MOS apresentam-se como dispositivos versáteis para a geração de imagens químicas com potencial de detecção e classificação de diferentes substâncias a partir de apenas um único sensor. No presente trabalho, foi proposto um sensor MOS com um perfil geométrico de porta em forma de cata-vento composta por Pd, Au e Pt. A resposta do sensor mostrou ter alta sensibilidade a moléculas ricas em átomos de H, como os gases H2 e NH3. As medidas de capacitância mostraram que o sensor tem uma resposta não linear para H2 e NH3 obedecendo à lei da isoterma de Langmuir. O sensor MOS mostrou-se eficiente na geração de imagens químicas através da técnica de escaneamento por luz pulsada. As imagens químicas correspondentes aos gases H2 e NH3 mostraram diferentes padrões quando o N2 foi utilizado como gás transportador. A diferença entre os padrões aconteceu principalmente devido ao perfil geométrico da porta metálica. A sensibilidade do sensor mostrou dependência com o potencial de polarização. Nas medidas de capacitância, a maior sensibilidade foi observada para potenciais próximos da tensão de banda plana. Já para as imagens químicas, a maior sensibilidade foi observada para potenciais inteiramente na região de depleção. A sensibilidade do sensor também se mostrou dependente do gás transporta- dor. O sensor mostrou ser mais sensível com N2 como gás transportador do que com ar seco. No entanto, o processo de dessorção dos íons H+ resultou ser mais eficiente em ar seco. Os resultados obtidos no presente trabalho sugerem a possibilidade de fabricação de um nariz optoeletrônico utilizando apenas um único sensor MOS.
The development of sensors and systems for environmental control has been shown to be an area of high scientific and technical interest. The main challenges in this area are related to the development of sensors capable of detecting many different substances. In this context, the MOS devices present themselves as versatile devices for chemical imaging with potential for detection and classification of different substances only using one single sensor. In the present work, was proposed a MOS sensor with a wing-vane geometric profile of its gate constituted of Pd, Au and Pt metals. The sensor\'s response showed to have high sensitivity to molecules rich on H atoms, such as H2 and NH3 gases. Capacitance measurements showed that the sensor has a nonlinear response for H2 and NH3 obeying the Langmuir isotherm law. The MOS sensor proved to be efficient in Chemical Imaging generation through the scanned light pulse technique. The chemical images of the H2 and NH3 gases showed different patterns when the N2 was used as carrier gas. The different patterns responses happened mainly due to geometric profile of the metallic gate. The sensor sensitivity showed dependence on the bias potential. In the capacitance measures, greater sensitivity was observed for potential near the flat-band voltage. In the chemical images, the greater sensitivity was observed for bias potential within depletion region. The sensor sensitivity was also dependent on the carrier gas. The sensor showed to be more sensitive with N2 as carrier gas than to dry air. However the desorption process of H+ have been more efficient in dry air. The results obtained in the present work suggest the possibility of manufacturing an optoelectronic nose using only a single MOS sensor.
APA, Harvard, Vancouver, ISO, and other styles
7

Moghe, Ameya S. "Synthesis and Gas Sensing Properties of MOD Ni-Zr02 Cermet Films on Silicon Substrate." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1131983774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nickerl, Georg, Irena Senkoska, and Stefan Kaskel. "Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases." Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36053.

Full text
Abstract:
Dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate was introduced into the chemically stable UiO-66 structure by a postsynthetic linker exchange reaction to create an optical sensor material for the detection of oxidative agents such as nitrous gases. The incorporated tetrazine unit can be reversibly oxidized and reduced, which is accompanied by a drastic colour change from yellow to pink and vice versa. The high stability of the framework during redox reaction was proven by powder X-ray diffraction and nitrogen physisorption measurements.
APA, Harvard, Vancouver, ISO, and other styles
9

Kristiansen, Pontus, and Roman Postnikov. "Tillståndsövervakning av rullningslager med hjälp av E-näsa." Thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71064.

Full text
Abstract:
I dagsläget finns det ingen standardiserad metod för att mäta en enhets tillstånd medhjälp av dofter. Vid tillståndsövervakning av rullningslager är vibrationsmätning denmest dominanta metoden. I samband med vibrationsmätning används i vissa falltemperaturövervakning för att få en bättre insikt på rullningslagrets tillstånd. I det härarbetet undersöks de om en elektronisk näsa kan avgöra ett rullningslagers tillstånd.Innan några mätningar påbörjas monterades en elektronisk näsa ihop i ett hölje sombestår av ett kretskort, metalloxid-sensorer och en fläkt för att styra dofter med ettkonstant flöde mot sensorerna. Den elektroniska näsan styrs av en Arduino Nanomikrokontroller. Utöver e-näsan sättes en enhet ihop tillhörande två temperaturgivareoch en luftfuktighetsgivare som styrs av en Arduino UNO. Enhetens syfte är att kunnakontrollera de rådande förhållandena vid mätningar och för att leta någon form avkorrelation mot e-näsan vid eventuella utslag. Förstörande prover av kullager utfördesför att se om e-näsan reagerar innan ett lagerhaveri. Testerna gjordes i en öppen samtsluten miljö och tre stycken olika oljor används för att smörja lagret. Detta för att seom e-näsan reagerar olika beroende på vilken olja som används. En undersökningutförs ifall den elektroniska näsan kan separera på de tre oljorna som används ilagertesterna. För att utvärdera mätresultaten används Excel och Minitab, därprincipalkomponentanalyser genomförs på all mätdata. Efter att alla lagerprover harverkställts utfördes en uppföljning av rullningslagrena för att studera deras tillstånd,detta genom ett optiskt mikroskop.Det framgår i rapporten att med hjälp av analysmetoden PCA syns det att denelektroniska näsan kunde skilja på hydraulolja, motorolja och växellådsolja. Utslag iPCA för de olika mätserierna blev inte identiska men det blev tydligaklusterindelningar hos samtliga mätserier. Genomförd studie visade att med delagerhaveri samt temperaturer går det inte att avgöra ett kullagers tillstånd med hjälpav en elektronisk näsa. Eftersom att de specifika gas-sensorerna som användes till enäsaninte gav någon form av utslag vid mätningarna. Den elektroniska näsanreagerade däremot vid totalhaveri av kullager, vilket är för sent i ett förebyggandeunderhållsperspektiv. Detta medförde att den elektroniska näsan inte kan användas förtillståndsövervakning av det specifika kullagret som användes vid denna studie.
At present, there is no standardized method of measuring a device's condition with thehelp of odors. In condition monitoring of rolling bearings, vibration measurement isthe most dominant method. In case of vibration measurement, temperature monitoringis used in some cases to get a better insight into the condition of the bearing. In thiswork, it is investigated whether an electronic nose can determine the condition of arolling bearing.Before any measurements began, an electronic nose is assembled in a housingconsisting of a circuit board, metal oxide sensors and a fan for stearing odors with aconstant flow towards the sensors. The electronic nose is controlled by an ArduinoNano which is a microcontroller. In addition to the e-nose, a unit is connected to twotemperature sensors and a humidity sensor controlled by an Arduino UNO. The unit'spurpose is to monitor the status and to look for any kind of correlation with the e-nosein case of any possible findings. Destructive specimens of ball bearings are performedto see if the e-nose responds prior to a bearing failure. Tests are conducted in an openand closed environment and three different oils are used to lubricate the bearings.This to see if the e-nose acts differently depending on the oil that is used. Aninvestigation is conducted if the electronic nose can separate the three different typesof oils that is used in the destructive bearing tests. To evaluate the measurementresults, Excel and Minitab are used, where principal component analysis is performedon all measurement data. After all bearing tests have been performed, a follow-up ofthe rolling bearings condition is performed, this through an optical microscope.The report shows that using the PCA analysis method, it appears that the electronicnose could distinguish between hydraulic oil, engine oil and gear oil. In the PCA forthe different measurement series the results did not become identical, but clusterdivisions became clear in all measurement series. Completed study showed that withthese bearing failures and temperatures, it is not possible to determine the condition ofthis ball bearer using an electronic nose. Because the specific gas sensors used for thee-nose did not give any kind of impact during the measurements. On the other hand,the electronic nose responded to a total failure of a ball bearing, which is too late in apreventative maintenance perspective. Therefore, the electronic nose cannot be usedfor condition monitoring of the specific ball bearing used in this study.
APA, Harvard, Vancouver, ISO, and other styles
10

Perrot, Virginie. "Méthode innovante de croissance de couches minces de MOF par CVD pour la détection de gaz." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1331.

Full text
Abstract:
La mesure sur site et en temps réel des concentrations de gaz est cruciale pour la compréhension et la surveillance des processus industriels et environnementaux. Ces dernières années, il devient de plus en plus nécessaire de développer des outils d'analyse multigaz portatifs permettant la détection in situ de mélanges gazeux complexes, principalement pour des raisons de sécurité, de processus et d'environnement. Une approche prometteuse est basée sur l'intégration de différentes parties de systèmes analytiques de détection (par exemple pré-concentrateur, colonne de chromatographie en phase gazeuse ou encore capteurs gravimétriques) dans une puce en silicium en utilisant les technologies standards de microélectronique. Toutefois, chacun de ces dispositifs doit être fonctionnalisé avec une couche sensible appropriée. Les Metal-Organic-Framework (MOF), des matériaux hybrides cristallins microporeux aux propriétés modulables, sont intéressant pour ce type d'application en raison de leur surface spécifique élevée et de leur stabilité chimique. Cependant, ces matériaux sont généralement synthétisés par des procédés en solution (synthèse solvothermale), ce qui complique la croissance de couches minces continues et leur intégration dans des micro-dispositifs. Ce travail a pour objectif le développement d’un procédé de synthèse en phase vapeur pour produire des films minces de Zeolitic Imidazolate Framework 8 (ZIF-8), un MOF particulièrement intéressant. La méthode de croissance est basée sur le dépôt de couches de ZnO par Atomic Layer Deposition (ALD) sur un substrat, suivi de sa conversion et de la formation de ZIF-8 par exposition cyclique à la vapeur d'eau et au ligand organique en phase vapeur. Cette approche a permis la formation de films minces d'épaisseur comprise entre 5 et 200 nm, indépendamment de l'épaisseur de ZnO initiale. L'impact des paramètres du procédé (température du substrat, pression de vapeur d'eau...) sur la croissance du MOF a été étudié. La composition, la morphologie et la cristallinité ont été examinées à l'aide d'un large panel de techniques de caractérisation (AFM, DRX, MEB, FTIR). De plus, les mécanismes de croissance ont été étudiés par XPS et ToF-SIMS pour comprendre le rôle de l'eau pendant la réaction et plusieurs hypothèses ont été émises. Enfin, les films ont été activés thermiquement et la porosité a été évaluée par ellipsométrie-porosimétrie. Le volume des pores représente 30 % du volume des films dans certains cas. Les propriétés d'adsorption des films ont également été étudiées à l'aide de capteurs de gaz gravimétriques. En effet, des films de ZIF-8 ont été déposés sur des microbalances à cristal de quartz (QCM) pour étudier les interactions entre la couche et plusieurs gaz (méthanol, acétone et eau) afin de déterminer l'intérêt des films minces de ZIF-8 dans des capteurs de ce type. Ce travail montre que les capteurs fonctionnalisés avec du ZIF-8 permettent la détection de tous les gaz indépendamment dans les gammes de concentration testées. Cependant, la sensibilité de la détection du méthanol est fortement impactée par l'ajout d'humidité relative
On-site and real-time measurement of gas concentrations are crucial for both the understanding and the monitoring of industrial and environmental processes. In recent years, there is an increasing need to develop portable multi-gas analysis tools allowing in situ detection of complex gas mixtures mainly due to safety, process and environmental considerations. A promising approach is based on the integration of the different parts of the analytical system (i.e. pre-concentrator, gas chromatography column, gravimetric sensors) in a silicon die by using standard microelectronic technologies. Each of these devices need to be coated by an appropriate functional layer. Metal Organic Frameworks (MOF), hybrid microporous crystalline materials with tuneable properties, are attractive for this type of application regarding their high specific surface area and chemical stability. However, these materials are usually synthetized via solvothermal techniques, which complicates the growth of continuous thin films and their integration in micro-devices. This work focuses on the development of a vapor phase-based route to produce Zeolitic Imidazolate Framework 8 (ZIF-8) thin films, a MOF of particular interest. The growth method is based on the deposition of ZnO layers by atomic layer deposition (ALD) on a substrate followed by ZIF-8 formation using cyclic exposure to water vapour and organic ligand in the gas phase. This approach allowed formation of thin films with tunable thickness between 5 and 200 nm, independently of the initial ZnO thickness. The impact of the process parameters (temperature of the substrate, water vapor pressure…) on the MOF growth was studied. The composition, morphology and crystallinity were examined using a wide range of characterization techniques (AFM, SEM, XRD and FTIR). Moreover, the growth mechanism was investigated by XPS and ToF-SIMS to understand the role of water during the reaction and several hypotheses were given. Finally, the as-synthesized films were thermally activated and the porosity was assessed using ellipsometric-porosimetry. Pore volume represents 30 % of the volume of the films in some cases. The adsorption properties of the films were also investigated using gravimetric gas sensors. Indeed, ZIF-8 films were grown on quartz crystal microbalance to study the interactions between the layer and several gases (methanol, acetone and water) in order to determine the benefit of ZIF-8 thin films in sensors. This work shows that the sensors coated with the ZIF-8 enable the detection of all the gases independently in the range of concentration tested. However, the sensitivity of the methanol detection is highly impacted by the addition of relative humidity
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "MOX Gas sensor"

1

Xin xing gao ji can mou ren cai yan jiu: Research on the new-type senior staff talents. Beijing: Guo fang da xue chu ban she, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "MOX Gas sensor"

1

Korotcenkov, Ghenadii. "Electrodes and Heaters in MOX-Based Gas Sensors." In Integrated Analytical Systems, 255–71. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7165-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Bum-Joon, and Jung-Sik Kim. "Sensing Characterization of the MOS Micro Gas Sensor Array on Gas Mixture." In Ceramic Transactions Series, 147–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119234463.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Debéda, Hélène, Van Son Nguyen, Fernando Almazán, Maria Pina Pilar, Véronique Jubéra, and Claude Lucat. "Printed Cantilevers and MOS Gas Sensors for Hazardous Gas Detection at Room Temperature." In Ceramic Transactions Series, 137–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119234463.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fritsch, Marco, Sindy Mosch, Mykola Vinnichenko, Nikolai Trofimenko, Mihails Kusnezoff, Franz-Martin Fuchs, Lena Wissmeier, Nikolay Samotaev, Maya Etrekova, and Dmitry Filipchuk. "Printed Miniaturized Platinum Heater on Ultra-Thin Ceramic Membrane for MOX Gas Sensors." In Springer Proceedings in Physics, 97–103. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Peng, Kai Song, Xiaodong Xia, Yinsheng Chen, Qi Wang, and Guo Wei. "Temperature and Humidity Compensation for MOS Gas Sensor Based on Random Forests." In Communications in Computer and Information Science, 135–45. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6373-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Kaushik, and Priyanka Kakoty. "Design, Simulation, and Performance Evaluation of a High Temperature and Low Power Consumption Microheater Structure for MOS Gas Sensors." In Lecture Notes in Electrical Engineering, 221–29. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2464-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benfica, Rui, Judith Chambers, Jawoo Koo, Alejandro Nin-Pratt, José Falck-Zepeda, Gert-Jan Stads, and Channing Arndt. "Food System Innovations and Digital Technologies to Foster Productivity Growth and Rural Transformation." In Science and Innovations for Food Systems Transformation, 421–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15703-5_22.

Full text
Abstract:
AbstractThis chapter looks at food system innovations and digital technologies as important drivers of productivity growth and improved food and nutrition security. The analysis emphasizes a mix of research feasibility and technology-enabling policy factors necessary to realize pro-poor benefits. Given their transformative potential and the urgency of developing the enabling R&D and policy trajectories required for impact, we highlight genome editing bio-innovations, specifically CRISPR-Cas9, to address sustainable agricultural growth; and digital technologies, including remote sensing, connected sensors, artificial intelligence, digital advisory services, digital financial services, and e-commerce, to help guide the operations and decision-making of farmers, traders, and policymakers in agricultural value chains.The analysis points to the need to close critical gaps in R&D investments, capabilities, and enabling policies and regulations to accelerate the scaling and adoption of innovations. At the global level, the engagement of low- and middle-income countries (LMICs) with global players should be facilitated to strengthen intellectual property (IP) access and the management of innovations; and North–South, South–South, and triangular cooperation should be promoted to strengthen LMICs’ regulatory capabilities. At the national level, countries need to invest in science-based participatory approaches to identify and adapt technologies to local conditions; close regulatory gaps through evidence-based frameworks that enable the rapid development, deployment, and safe use of innovations; close institutional and human capacity gaps by addressing limitations in institutional capacities and coordination, while training a new generation of scientists with the skills needed to develop and deliver innovations; develop an understanding of political economy factors for a nuanced knowledge of actors’ agendas to better inform communications and address technology hesitancy; close digital infrastructure gaps in rural areas by promoting simultaneous investments in digital infrastructure and electrification, reducing data costs, and improving digital literacy; and develop sustainable business models for digital service providers to help them achieve profitability, interoperability, and scale to reach a sustainable critical mass, and thus facilitate the adoption of food system innovations.
APA, Harvard, Vancouver, ISO, and other styles
8

Krishna Rao, Subha, R. Rajesh Kumar, and Chandrasekaran Gopalakrishnan. "Fiber Optic Sensors for Gas Detection: An Overview on Spin Frustrated Multiferroics." In Gas Sensors [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106863.

Full text
Abstract:
Real-time gas sensors, which use chemiresistive metal oxide (MO) semiconductors, have become more important in both research and industry. Fiber optic metal oxide (MO) semiconductor sensors have so increased the utility and demand for optical sensors in a variety of military, industrial, and social applications. Fiber optic sensors’ inherent benefits of lightweight, compact size, and low attenuation were actively leveraged to overcome their primary disadvantage of expensive cost. With the growing need for quicker, more precise, and simpler gas sensing, metal oxide semiconductor gas sensors are focusing on new and novel materials at room temperature. The realization that materials with coexisting magnetic and ferroelectric orders offer up effective ways to alter magnetism using electric fields has drawn scientists from diverse areas together to research multiferroics for gas sensing applications in recent years. The chapter shall encompass a brief summary of the underlying physics related to fiber optic gas sensors and parameters involved in gas sensing, the significance of the fascinating class of metal oxide materials, and an outline of spin frustrated multiferroics for possible applications and its potential possibilities for progress in the future.
APA, Harvard, Vancouver, ISO, and other styles
9

Murrieta-Rico, Fabian N., Rosario I. Yocupicio-Gaxiola, Vitalii Petranovskii, Donald H. Galván, and Joel Antunez-Garcia. "Applications of Quartz Crystal Microbalances Modified With Metal Organic Frameworks." In Emerging Applications and Implementations of Metal-Organic Frameworks, 56–73. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4760-1.ch004.

Full text
Abstract:
Metal-organic frameworks (MOFs) are versatile materials that are of interest due to their application and properties. MOFs are highly crystalline and porous materials; they are composed of organic bridging ligands, acting as linkers, and a three-dimensional (3D) network of metal ions that are secondary building units. Since the MOFs have a high surface area, high porosity, tunable topography, and their structures are quite diverse, these materials are used in process of separation/purification, gas/energy storage, drug delivery, catalysis, and chemical sensors. Since the MOFs can be modified to selectively adsorb chemical species, they can be used as sensitive layer for modification of sensors. This process allows the sensor to detect the target analyte. Quartz crystal microbalances (QCMs) are highly sensitive mass sensors. In this chapter, the authors review the literature related to QCMs modified with MOFs. In particular, the relationship between target analyte, class of MOF, and instrument used for measurement of frequency variations.
APA, Harvard, Vancouver, ISO, and other styles
10

Landheer, D., W. McKinnon, W. Jiang, G. Lopinski, G. Dubey, N. Tarr, M. Shinwari, and M. Deen. "Bioaffinity Sensors Based on MOS Field-Effect Transistors." In Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications, 215–65. CRC Press, 2011. http://dx.doi.org/10.1201/b10851-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "MOX Gas sensor"

1

Briand, D., L. Guillot, S. Raible, J. Kappler, and N. F. de Rooij. "Highly Integrated Wafer Level Packaged MOX Gas Sensors." In TRANSDUCERS '07 & Eurosensors XXI. 2007 14th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 2007. http://dx.doi.org/10.1109/sensor.2007.4300654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jeong-Ho Park, Kwang-Min Park, Tae-Wan Kim, Chong-Ook Park, and Hyung-Joun Yoo. "Interface circuit for three-electrode metal-oxide (MOX) gas sensor." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bedenik, Graziella, Matheus Souza, Elyson A. N. Carvalho, Lucas Molina, Jugurta Montalvao, and Raimundo Freire. "Analysis of Parameters Influence in a MOX Gas Sensor Model." In 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2022. http://dx.doi.org/10.1109/i2mtc48687.2022.9806695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jelicic, Vana, Dinko Oletic, Tomislav Sever, and Vedran Bilas. "Evaluation of MOX gas sensor transient response for low-power operation." In 2015 IEEE Sensors Applications Symposium (SAS). IEEE, 2015. http://dx.doi.org/10.1109/sas.2015.7133584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oletic, Dinko, Vana Jelicic, Dario Antolovic, and Vedran Bilas. "Energy-efficient atmospheric CO concentration sensing with on-demand operating MOX gas sensor." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madrolle, S., P. Grangeat, and Ch Jutten. "Dual-temperature mode for quantitative analysis of gas mixtures with MOX sensor." In 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, 2017. http://dx.doi.org/10.1109/isoen.2017.7968886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kühn, K., M. Leidinger, E. Pignanelli, and A. Schütze. "2.5.3 Investigations on a MOX Gas Sensor as an Infrared Source for an IR-based Gas Sensing System." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/2.5.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shahin, Luay. "The design techniques and applications of gas measurement systems based on MOX sensor array." In 2018 11th International Symposium on Mechatronics and its Applications (ISMA). IEEE, 2018. http://dx.doi.org/10.1109/isma.2018.8330128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandez, L., A. Gutierrez-Galvez, and S. Marco. "P2.0.7 Multi-way analysis of diversity and redundancy factors in large MOX gas sensor data." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/p2.0.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Conso, F., M. Grassi, P. Malcovati, and A. Baschirotto. "Reconfigurable integrated wide-dynamic-range read-out circuit for MOX gas-sensor grids providing local temperature regulation." In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography