Journal articles on the topic 'MOX Gas sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MOX Gas sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Abdullah, Abdulnasser Nabil, Kamarulzaman Kamarudin, Latifah Munirah Kamarudin, Abdul Hamid Adom, Syed Muhammad Mamduh, Zaffry Hadi Mohd Juffry, and Victor Hernandez Bennetts. "Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity." Sensors 22, no. 9 (April 26, 2022): 3301. http://dx.doi.org/10.3390/s22093301.
Full textNorzam, Wan Abdul Syaqur, Huzein Fahmi Hawari, Kamarulzaman Kamarudin, Zaffry Hadi Mohd Juffry, Nurul Athirah Abu Hussein, Monika Gupta, and Abdulnasser Nabil Abdullah. "Mobile Robot Gas Source Localization Using SLAM-GDM with a Graphene-Based Gas Sensor." Electronics 12, no. 1 (December 30, 2022): 171. http://dx.doi.org/10.3390/electronics12010171.
Full textMüller, Gerhard, and Giorgio Sberveglieri. "Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration." Chemosensors 10, no. 5 (May 2, 2022): 171. http://dx.doi.org/10.3390/chemosensors10050171.
Full textSamotaev, Nikolay, Konstantin Oblov, Anastasia Ivanova, Boris Podlepetsky, Nikolay Volkov, and Nazar Zibilyuk. "Technology for SMD Packaging MOX Gas Sensors." Proceedings 2, no. 13 (November 30, 2018): 934. http://dx.doi.org/10.3390/proceedings2130934.
Full textSamotaev, Nikolay, Konstantin Oblov, and Anastasia Ivanova. "Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices." MATEC Web of Conferences 207 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820704003.
Full textMartinez, Burgués, and Marco. "Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution." Sensors 19, no. 18 (September 18, 2019): 4029. http://dx.doi.org/10.3390/s19184029.
Full textFrancioso, Luca, Pasquale Creti, Maria Concetta Martucci, Simonetta Capone, Antonietta Taurino, Pietro Siciliano, and Chiara De Pascali. "100 nm-Gap Fingers Dielectrophoresis Functionalized MOX Gas Sensor Array for Low Temperature VOCs Detection." Proceedings 2, no. 13 (November 13, 2018): 1027. http://dx.doi.org/10.3390/proceedings2131027.
Full textWen, Wei-Chih, Ting-I. Chou, and Kea-Tiong Tang. "A Gas Mixture Prediction Model Based on the Dynamic Response of a Metal-Oxide Sensor." Micromachines 10, no. 9 (September 11, 2019): 598. http://dx.doi.org/10.3390/mi10090598.
Full textPalacín, Jordi, Elena Rubies, Eduard Clotet, and David Martínez. "Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors." Sensors 22, no. 3 (February 1, 2022): 1120. http://dx.doi.org/10.3390/s22031120.
Full textPalacín, Jordi, Eduard Clotet, and Elena Rubies. "Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles." Chemosensors 10, no. 3 (March 19, 2022): 118. http://dx.doi.org/10.3390/chemosensors10030118.
Full textJaeschke, Carsten, Oriol Gonzalez, Johannes J. Glöckler, Leila T. Hagemann, Kaylen E. Richardson, Francesc Adrover, Marta Padilla, Jan Mitrovics, and Boris Mizaikoff. "A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis." Proceedings 2, no. 13 (November 30, 2018): 993. http://dx.doi.org/10.3390/proceedings2130993.
Full textSamotaev, Nikolay, Konstantin Oblov, Denis Veselov, Boris Podlepetsky, Maya Etrekova, Nikolay Volkov, and Nazar Zibilyuk. "Technology of SMD MOX Gas Sensors Rapid Prototyping." Materials Science Forum 977 (February 2020): 231–37. http://dx.doi.org/10.4028/www.scientific.net/msf.977.231.
Full textAlvarado, M., A. Romero, J. L. Ramírez, S. De la Flor, and E. Llobet. "Testing the Reliability of Flexible MOX Gas Sensors under Strain." Proceedings 14, no. 1 (June 19, 2019): 20. http://dx.doi.org/10.3390/proceedings2019014020.
Full textGomri, S., T. Contaret, J. Seguin, K. Aguir, and M. Masmoudi. "Noise Modeling in MOX Gas Sensors." Fluctuation and Noise Letters 16, no. 02 (March 15, 2017): 1750013. http://dx.doi.org/10.1142/s0219477517500134.
Full textKim, Taejung, Seungwook Lee, Wootaek Cho, Yeong Min Kwon, Jeong Min Baik, and Heungjoo Shin. "Development of a Novel Gas-Sensing Platform Based on a Network of Metal Oxide Nanowire Junctions Formed on a Suspended Carbon Nanomesh Backbone." Sensors 21, no. 13 (July 1, 2021): 4525. http://dx.doi.org/10.3390/s21134525.
Full textShaposhnik, Aleksei, Pavel Moskalev, Alexey Zviagin, Kristina Chegereva, Stanislav Ryabtsev, Alexey Vasiliev, and Polina Shaposhnik. "Selective Gas Detection by a Single MOX-Sensor." Proceedings 1, no. 4 (August 25, 2017): 594. http://dx.doi.org/10.3390/proceedings1040594.
Full textJaeschke, Carsten, Oriol Gonzalez, Marta Padilla, Kaylen Richardson, Johannes Glöckler, Jan Mitrovics, and Boris Mizaikoff. "A Novel Modular System for Breath Analysis Using Temperature Modulated MOX Sensors." Proceedings 14, no. 1 (June 19, 2019): 49. http://dx.doi.org/10.3390/proceedings2019014049.
Full textSamotaev, Nikolay. "Rapid Prototyping of MOX Gas Sensors in Form-Factor of SMD Packages." Proceedings 14, no. 1 (June 19, 2019): 52. http://dx.doi.org/10.3390/proceedings2019014052.
Full textHammer, Christof, Johannes Warmer, Stephan Maurer, Peter Kaul, Ronald Thoelen, and Norbert Jung. "A Compact 16 Channel Embedded System with High Dynamic Range Readout and Heater Management for Semiconducting Metal Oxide Gas Sensors." Electronics 9, no. 11 (November 5, 2020): 1855. http://dx.doi.org/10.3390/electronics9111855.
Full textHammer, Christof, Sebastian Sporrer, Johannes Warmer, Peter Kaul, Ronald Thoelen, and Norbert Jung. "Algorithms for Automatic Data Validation and Performance Assessment of MOX Gas Sensor Data Using Time Series Analysis." Algorithms 15, no. 10 (September 28, 2022): 360. http://dx.doi.org/10.3390/a15100360.
Full textFioravanti, Ambra, Pietro Marani, Giorgio Paolo Massarotti, Stefano Lettieri, Sara Morandi, and Maria Cristina Carotta. "(Ti,Sn) Solid Solution Based Gas Sensors for New Monitoring of Hydraulic Oil Degradation." Materials 14, no. 3 (January 28, 2021): 605. http://dx.doi.org/10.3390/ma14030605.
Full textGomri, S., J. Seguin, T. Contaret, T. Fiorido, and K. Aguir. "A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors." Fluctuation and Noise Letters 17, no. 02 (May 2, 2018): 1850016. http://dx.doi.org/10.1142/s0219477518500165.
Full textRussell, Hugo Savill, Louise Bøge Frederickson, Szymon Kwiatkowski, Ana Paula Mendes Emygdio, Prashant Kumar, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson. "Enhanced Ambient Sensing Environment—A New Method for Calibrating Low-Cost Gas Sensors." Sensors 22, no. 19 (September 24, 2022): 7238. http://dx.doi.org/10.3390/s22197238.
Full textKumar, Navjot, and Rahul Prajesh. "Selectivity enhancement for metal oxide (MOX) based gas sensor using thermally modulated datasets coupled with golden section optimization and chemometric techniques." Review of Scientific Instruments 93, no. 6 (June 1, 2022): 064702. http://dx.doi.org/10.1063/5.0083061.
Full textKočí, Michal, Alexander Kromka, Adam Bouřa, Ondrej Szabó, and Miroslav Husák. "Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities." Sensors 21, no. 16 (August 10, 2021): 5390. http://dx.doi.org/10.3390/s21165390.
Full textKrivetskiy, Valeriy, Matvey Andreev, and Alexander Efitorov. "Selective Detection of Hydrocarbons in Real Atmospheric Conditions by Single MOX Sensor in Temperature Modulation Mode." Proceedings 14, no. 1 (June 19, 2019): 47. http://dx.doi.org/10.3390/proceedings2019014047.
Full textVoss, Andreas, Rico Schroeder, Steffen Schulz, Jens Haueisen, Stefanie Vogler, Paul Horn, Andreas Stallmach, and Philipp Reuken. "Detection of Liver Dysfunction Using a Wearable Electronic Nose System Based on Semiconductor Metal Oxide Sensors." Biosensors 12, no. 2 (January 26, 2022): 70. http://dx.doi.org/10.3390/bios12020070.
Full textWimmer-Teubenbacher, Robert, Florentyna Sosada-Ludwikowska, Bernat Travieso, Stefan Defregger, Oeznur Tokmak, Jan Niehaus, Marco Deluca, and Anton Köck. "CuO Thin Films Functionalized with Gold Nanoparticles for Conductometric Carbon Dioxide Gas Sensing." Chemosensors 6, no. 4 (November 22, 2018): 56. http://dx.doi.org/10.3390/chemosensors6040056.
Full textBurgués, Javier, Victor Hernández, Achim Lilienthal, and Santiago Marco. "Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping." Sensors 19, no. 3 (January 24, 2019): 478. http://dx.doi.org/10.3390/s19030478.
Full textGraunke, Thorsten, Katrin Schmitt, and Jürgen Wöllenstein. "Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors." Journal of Sensors 2016 (2016): 1–22. http://dx.doi.org/10.1155/2016/2435945.
Full textChesler, Paul, Cristian Hornoiu, Mihai Anastasescu, Jose Maria Calderon-Moreno, Marin Gheorghe, and Mariuca Gartner. "Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study." Gels 8, no. 11 (November 8, 2022): 721. http://dx.doi.org/10.3390/gels8110721.
Full textÁlvarez Simón, Luis Carlos, and Emmanuel Gómez Ramirez. "Circuito CMOS para el control de temperatura de sensores de gas MOX." Ingeniería Investigación y Tecnología 20, no. 3 (July 1, 2019): 1–10. http://dx.doi.org/10.22201/fi.25940732e.2019.20n3.036.
Full textQomaruddin, Cristian Fàbrega, Andreas Waag, Andris Šutka, Olga Casals, Hutomo Suryo Wasisto, and Joan Daniel Prades. "Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders." Proceedings 2, no. 13 (December 4, 2018): 834. http://dx.doi.org/10.3390/proceedings2130834.
Full textOchoa-Muñoz, Yasser H., Ruby Mejía de Gutiérrez, and Jorge E. Rodríguez-Páez. "Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review." Molecules 28, no. 3 (January 24, 2023): 1150. http://dx.doi.org/10.3390/molecules28031150.
Full textDanesh, Ehsan, Richard Dudeney, Jone-Him Tsang, Chris Blackman, James Covington, Peter Smith, and John Saffell. "A Multi-MOx Sensor Approach to Measure Oxidizing and Reducing Gases." Proceedings 14, no. 1 (June 19, 2019): 50. http://dx.doi.org/10.3390/proceedings2019014050.
Full textXing, Yuxin, Timothy Vincent, Marina Cole, and Julian Gardner. "Real-Time Thermal Modulation of High Bandwidth MOX Gas Sensors for Mobile Robot Applications." Sensors 19, no. 5 (March 8, 2019): 1180. http://dx.doi.org/10.3390/s19051180.
Full textNúñez-Carmona, Estefanía, Marco Abbatangelo, and Veronica Sberveglieri. "Innovative Sensor Approach to Follow Campylobacter jejuni Development." Biosensors 9, no. 1 (January 7, 2019): 8. http://dx.doi.org/10.3390/bios9010008.
Full textBoiger, Romana, Stefan Defregger, Mirza Grbic, Anton Köck, Manfred Mücke, Robert Wimmer-Teubenbacher, and Bernat Zaragoza Travieso. "Exploring Temperature-Modulated Operation Mode of Metal Oxide Gas Sensors for Robust Signal Processing." Proceedings 2, no. 13 (February 13, 2019): 1058. http://dx.doi.org/10.3390/proceedings2131058.
Full textChesler, Paul, and Cristian Hornoiu. "MOX-Based Resistive Gas Sensors with Different Types of Sensitive Materials (Powders, Pellets, Films), Used in Environmental Chemistry." Chemosensors 11, no. 2 (January 29, 2023): 95. http://dx.doi.org/10.3390/chemosensors11020095.
Full textKhemtonglang, Kodchakorn, Nataphiya Chaiyaphet, Tinnakorn Kumsaen, Chanyamon Chaiyachati, and Oranat Chuchuen. "A Smart Wristband Integrated with an IoT-Based Alarming System for Real-Time Sweat Alcohol Monitoring." Sensors 22, no. 17 (August 26, 2022): 6435. http://dx.doi.org/10.3390/s22176435.
Full textGenzardi, Dario, Giuseppe Greco, Estefanía Núñez-Carmona, and Veronica Sberveglieri. "Real Time Monitoring of Wine Vinegar Supply Chain through MOX Sensors." Sensors 22, no. 16 (August 19, 2022): 6247. http://dx.doi.org/10.3390/s22166247.
Full textFioravanti, Ambra, Antonino Bonanno, Maria Cristina Carotta, Giorgio Paolo Massarotti, Sara Morandi, Nicolò Riboni, and Federica Bianchi. "Novel Methodology Based on Thick Film Gas Sensors to Monitor the Hydraulic Oil Ageing." Proceedings 2, no. 13 (December 10, 2018): 944. http://dx.doi.org/10.3390/proceedings2130944.
Full textRossi, Maurizio, and Davide Brunelli. "Ultra Low Power MOX Sensor Reading for Natural Gas Wireless Monitoring." IEEE Sensors Journal 14, no. 10 (October 2014): 3433–41. http://dx.doi.org/10.1109/jsen.2014.2339893.
Full textMartini, Virginie, Khalifa Aguir, Bruno Lawson, and Marc Bendahan. "Low Power Multisensors for Selective Gas Detection." Engineering Proceedings 6, no. 1 (May 17, 2021): 89. http://dx.doi.org/10.3390/i3s2021dresden-10151.
Full textPalacín, Jordi, David Martínez, Eduard Clotet, Tomàs Pallejà, Javier Burgués, Jordi Fonollosa, Antonio Pardo, and Santiago Marco. "Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection." Sensors 19, no. 9 (April 26, 2019): 1957. http://dx.doi.org/10.3390/s19091957.
Full textVincent, Timothy A., Yuxin Xing, Marina Cole, and Julian W. Gardner. "Thermal Modulation of a High-Bandwidth Gas Sensor Array in Real-Time for Application on a Mobile Robot." Proceedings 2, no. 13 (November 20, 2018): 858. http://dx.doi.org/10.3390/proceedings2130858.
Full textAl-Okby, Mohammed Faeik Ruzaij, Thomas Roddelkopf, Heidi Fleischer, and Kerstin Thurow. "Evaluating a Novel Gas Sensor for Ambient Monitoring in Automated Life Science Laboratories." Sensors 22, no. 21 (October 25, 2022): 8161. http://dx.doi.org/10.3390/s22218161.
Full textShaposhnik, Alexey, Pavel Moskalev, Elena Sizask, Stanislav Ryabtsev, and Alexey Vasiliev. "Selective Detection of Hydrogen Sulfide and Methane by a Single MOX-Sensor." Sensors 19, no. 5 (March 6, 2019): 1135. http://dx.doi.org/10.3390/s19051135.
Full textWaclawik, Eric R., Jin Chang, Andrea Ponzoni, Isabella Concina, Dario Zappa, Elisabetta Comini, Nunzio Motta, Guido Faglia, and Giorgio Sberveglieri. "Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces." Beilstein Journal of Nanotechnology 3 (May 2, 2012): 368–77. http://dx.doi.org/10.3762/bjnano.3.43.
Full textMorati, Nicolas, Thierry Contaret, Sami Gomri, Tomas Fiorido, Jean-Luc Seguin, and Marc Bendahan. "Noise spectroscopy data analysis-based gas identification with a single MOX sensor." Sensors and Actuators B: Chemical 334 (May 2021): 129654. http://dx.doi.org/10.1016/j.snb.2021.129654.
Full text