Journal articles on the topic 'MRNA technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MRNA technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Y., X. Zhou, M. A. R. St. John, and D. T. W. Wong. "RNA Profiling of Cell-free Saliva Using Microarray Technology." Journal of Dental Research 83, no. 3 (2004): 199–203. http://dx.doi.org/10.1177/154405910408300303.
Full textToniolo, Antonio, Giuseppe Maccari, and Giovanni Camussi. "mRNA Technology and Mucosal Immunization." Vaccines 12, no. 6 (2024): 670. http://dx.doi.org/10.3390/vaccines12060670.
Full textProvost, Patrick, Nicolas Derome, Christian Linard, Bernard Massie, and Jean Caron. "Potential Conscientious Objection to mRNA Technology as Preventive Treatment for COVID-19." International Journal of Vaccine Theory, Practice, and Research 2, no. 2 (2022): 445–54. http://dx.doi.org/10.56098/ijvtpr.v2i2.41.
Full textLiu, Yongbin, Dongfang Yu, Lingyi Huang, and Junhua Mai. "Abstract 4482: Development of a stable and efficient therapeutic mRNA cancer vaccine utilizing RNA-plex technology." Cancer Research 85, no. 8_Supplement_1 (2025): 4482. https://doi.org/10.1158/1538-7445.am2025-4482.
Full textYılmaz, Engin. "Aşı Teknolojisinde Yeni Umutlar: mRNA Aşıları." Mikrobiyoloji Bulteni 55, no. 2 (2021): 265–84. http://dx.doi.org/10.5578/mb.20219912.
Full textLe Page, Michael. "mRNA technology may treat stubborn diseases." New Scientist 253, no. 3367 (2022): 9. http://dx.doi.org/10.1016/s0262-4079(21)02292-2.
Full textPardi, Norbert, Michael J. Hogan, and Drew Weissman. "Recent advances in mRNA vaccine technology." Current Opinion in Immunology 65 (August 2020): 14–20. http://dx.doi.org/10.1016/j.coi.2020.01.008.
Full textFortner, Andra, and Octavian Bucur. "mRNA-based vaccine technology for HIV." Discoveries 10, no. 2 (2022): e150. http://dx.doi.org/10.15190/d.2022.9.
Full textOloruntimehin, Sola, Florence Akinyi, Michael Paul, and Olumuyiwa Ariyo. "mRNA Vaccine Technology Beyond COVID-19." Vaccines 13, no. 6 (2025): 601. https://doi.org/10.3390/vaccines13060601.
Full textŞahiner, Fatih, and İsmail Selçuk Aygar. "A New Era in Vaccine Technology: mRNA-Based Vaccine Design." Journal of Molecular Virology and Immunology 1, no. 3 (2021): 9–17. https://doi.org/10.46683/jmvi.2020.15.
Full textZhou, Ying, Zhaoru Wu, Yibo Wang, et al. "Advances and Challenges in mRNA Vaccine Technology." Proceedings of Anticancer Research 9, no. 2 (2025): 27–42. https://doi.org/10.26689/par.v9i2.10067.
Full textTurner-Bridger, Benita, Maximillian Jakobs, Leila Muresan та ін. "Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons". Proceedings of the National Academy of Sciences 115, № 41 (2018): E9697—E9706. http://dx.doi.org/10.1073/pnas.1806189115.
Full textEralp, Yesim. "Application of mRNA Technology in Cancer Therapeutics." Vaccines 10, no. 8 (2022): 1262. http://dx.doi.org/10.3390/vaccines10081262.
Full textSchlake, Thomas, Andreas Thess, Moritz Thran, and Ingo Jordan. "mRNA as novel technology for passive immunotherapy." Cellular and Molecular Life Sciences 76, no. 2 (2018): 301–28. http://dx.doi.org/10.1007/s00018-018-2935-4.
Full textGarrido, Nicolás, Sandra García-Herrero, and Marcos Meseguer. "Assessment of sperm using mRNA microarray technology." Fertility and Sterility 99, no. 4 (2013): 1008–22. http://dx.doi.org/10.1016/j.fertnstert.2013.02.006.
Full textMiliotou, Androulla N., Sofia K. Georgiou-Siafis, Charikleia Ntenti, Ioannis S. Pappas, and Lefkothea C. Papadopoulou. "Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape." Current Issues in Molecular Biology 45, no. 11 (2023): 9181–214. http://dx.doi.org/10.3390/cimb45110576.
Full textDahl, Lars Ole Sti, Sjoerd Hak, Stine Braaen, et al. "Implementation of mRNA–Lipid Nanoparticle Technology in Atlantic Salmon (Salmo salar)." Vaccines 12, no. 7 (2024): 788. http://dx.doi.org/10.3390/vaccines12070788.
Full textVolkova, Oxana A., Yury V. Kondrakhin, Ivan S. Yevshin, Tagir F. Valeev, and Ruslan N. Sharipov. "Assessment of translational importance of mammalian mRNA sequence features based on Ribo-Seq and mRNA-Seq data." Journal of Bioinformatics and Computational Biology 14, no. 02 (2016): 1641006. http://dx.doi.org/10.1142/s0219720016410067.
Full textPlotnikova, Marina A., Ekaterina A. Romanovskaya-Romanko, Anastasia A. Pulkina, Marina A. Shuklina, Anna-Polina S. Shurygina, and Sergey A. Klotchenko. "In Vitro Evaluation of the Antiviral Properties of Exogenous mRNA Encoding the Human MxA Protein." Microbiology Research 16, no. 2 (2025): 32. https://doi.org/10.3390/microbiolres16020032.
Full textLitvinova, V. R., A. P. Rudometov, L. I. Karpenko, and A. A. Ilyichev. "mRNA-Vaccine Platform: Features of Obtaining and Delivery of mRNA." Биоорганическая химия 49, no. 2 (2023): 134–52. http://dx.doi.org/10.31857/s013234232302015x.
Full textSkerritt, John H., Carolyn Tucek-Szabo, Brett Sutton, and Terry Nolan. "The Platform Technology Approach to mRNA Product Development and Regulation." Vaccines 12, no. 5 (2024): 528. http://dx.doi.org/10.3390/vaccines12050528.
Full textFeinberg, Mark. "Leveraging mRNA technology to accelerate HIV vaccine development." Vaccine Insights 02, no. 03 (2023): 87–92. http://dx.doi.org/10.18609/vac.2023.016.
Full textKirby, Tony. "mRNA vaccine technology for a multivalent flu vaccine." Lancet Infectious Diseases 23, no. 2 (2023): 157. http://dx.doi.org/10.1016/s1473-3099(23)00013-0.
Full textChen, Zhi, Jingpeng Zhou, Xiaolong Wang, et al. "Screening candidate microR-15a- IRAK2 regulatory pairs for predicting the response to Staphylococcus aureus-induced mastitis in dairy cows." Journal of Dairy Research 86, no. 4 (2019): 425–31. http://dx.doi.org/10.1017/s0022029919000785.
Full textGerold, Megan N., Evan Toth, Rebecca H. Blair, et al. "Analytical Performance of a Multiplexed Microarray Assay for Rapid Identification and Quantification of a Multivalent mRNA Vaccine." Vaccines 12, no. 10 (2024): 1144. http://dx.doi.org/10.3390/vaccines12101144.
Full textFloudas, Charalampos S., Siranush Sarkizova, Michele Ceccarelli, and Wei Zheng. "Leveraging mRNA technology for antigen based immuno-oncology therapies." Journal for ImmunoTherapy of Cancer 13, no. 1 (2025): e010569. https://doi.org/10.1136/jitc-2024-010569.
Full textXian, He, Yue Zhang, Chengzhong Yu, and Yue Wang. "Nanobiotechnology-Enabled mRNA Stabilization." Pharmaceutics 15, no. 2 (2023): 620. http://dx.doi.org/10.3390/pharmaceutics15020620.
Full textLee, Sojin, Joon Young Park, Goo-Young Kim, et al. "708 Application of a novel mSENS drug delivery technology for mRNA therapeutics." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A750. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0708.
Full textPaczkowska, Anna, Karolina Hoffmann, Agata Andrzejczak, et al. "The Application of mRNA Technology for Vaccine Production—Current State of Knowledge." Vaccines 13, no. 4 (2025): 389. https://doi.org/10.3390/vaccines13040389.
Full textStarostina, E. V., L. F. Nizolenko, L. I. Karpenko, and A. A. Ilyichev. "Antitumor mRNA vaccines based on neoantigens." Siberian journal of oncology 23, no. 6 (2025): 149–58. https://doi.org/10.21294/1814-4861-2024-23-6-149-158.
Full textMoya-Ramírez, Ignacio, Clement Bouton, Cleo Kontoravdi, and Karen Polizzi. "High resolution biosensor to test the capping level and integrity of mRNAs." Nucleic Acids Research 48, no. 22 (2020): e129-e129. http://dx.doi.org/10.1093/nar/gkaa955.
Full textVidhyalakshmi R, Rajaganapathy K, Kowsika M, and Pratheeba G. "The Transformative Potential of mRNA Vaccines in Revolutionizing Vaccine Development And Therapeutic Applications." Journal of Pharma Insights and Research 2, no. 3 (2024): 080–87. http://dx.doi.org/10.69613/vpxx7e92.
Full textLiao, Wan-Lin, Wei-Chiao Wang, Wen-Chang Chang та Joseph T. Tseng. "The RNA-binding Protein HuR Stabilizes Cytosolic Phospholipase A2α mRNA under Interleukin-1β Treatment in Non-small Cell Lung Cancer A549 Cells". Journal of Biological Chemistry 286, № 41 (2011): 35499–508. http://dx.doi.org/10.1074/jbc.m111.263582.
Full textNiazi, Sarfaraz K. "Affordable mRNA Novel Proteins, Recombinant Protein Conversions, and Biosimilars—Advice to Developers and Regulatory Agencies." Biomedicines 13, no. 1 (2025): 97. https://doi.org/10.3390/biomedicines13010097.
Full textR, Palacios-Castrillo. "The Science and the Potential Dangers behind RNA-based Vaccine Technology." Virology & Immunology Journal 7, no. 4 (2023): 1–3. http://dx.doi.org/10.23880/vij-16000333.
Full textEsprit, Arthur, Wout de Mey, Rajendra Bahadur Shahi, Kris Thielemans, Lorenzo Franceschini, and Karine Breckpot. "Neo-Antigen mRNA Vaccines." Vaccines 8, no. 4 (2020): 776. http://dx.doi.org/10.3390/vaccines8040776.
Full textJahnz-Różyk, Karina, and Ewa Więsik-Szewczyk. "Application of mRNA technology in vaccines against pandemic pathogens - present and future." Journal of Health Policy & Outcomes Research, no. 3 (August 31, 2022): 27–34. http://dx.doi.org/10.7365/jhpor.2021.3.3.
Full textMeguro, K., K. Igarashi, M. Yamamoto, H. Fujita, and S. Sassa. "The role of the erythroid-specific delta-aminolevulinate synthase gene expression in erythroid heme synthesis." Blood 86, no. 3 (1995): 940–48. http://dx.doi.org/10.1182/blood.v86.3.940.940.
Full textMeguro, K., K. Igarashi, M. Yamamoto, H. Fujita, and S. Sassa. "The role of the erythroid-specific delta-aminolevulinate synthase gene expression in erythroid heme synthesis." Blood 86, no. 3 (1995): 940–48. http://dx.doi.org/10.1182/blood.v86.3.940.bloodjournal863940.
Full textJia, Kaining, Xiaocang Ren, Yuee Liu, and Jiawei Wang. "Screening and Biological Function Analysis of miRNA and mRNA Related to Lung Adenocarcinoma Based on Bioinformatics Technology." Journal of Oncology 2022 (August 31, 2022): 1–13. http://dx.doi.org/10.1155/2022/4339391.
Full textXie, Wen, Baiping Chen, and John Wong. "Publisher Correction: Evolution of the market for mRNA technology." Nature Reviews Drug Discovery 20, no. 11 (2021): 880. http://dx.doi.org/10.1038/s41573-021-00326-x.
Full textKhormi, Ali Hassan Ibrahim, Raied Mohammad Mosa Qohal, Abdulrahman Yahya Ahmed Masrai, et al. "Emerging Trends in mRNA Vaccine Technology: Beyond Infectious Diseases." Egyptian Journal of Chemistry 67, no. 13 (2024): 1567–74. https://doi.org/10.21608/ejchem.2024.337883.10838.
Full textWatts, Geoff. "Petro Terblanche: developing an mRNA technology hub in Africa." Lancet 401, no. 10393 (2023): 2030. http://dx.doi.org/10.1016/s0140-6736(23)01186-8.
Full textNogrady, Bianca. "mRNA technology helps reinvigorate the hunt for cancer vaccines." Nature 640, no. 8060 (2025): S54—S56. https://doi.org/10.1038/d41586-025-01151-7.
Full textSilva, Heslley. "mRNA Technology in Modern Medicine: Review and Future Prospects." Clinical and Molecular Epidemiology 2 (January 17, 2025): 1. https://doi.org/10.53964/cme.2025001.
Full textSemple, Sean C., Robert Leone, Christopher J. Barbosa, Ying K. Tam, and Paulo J. C. Lin. "Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics." Pharmaceutics 14, no. 2 (2022): 398. http://dx.doi.org/10.3390/pharmaceutics14020398.
Full textKaya, Çağlar, and Tolga Sarıyer. "Gene Silencing RNAi Technology: Uses in Plants." JOURNAL OF GLOBAL CLIMATE CHANGE 1, no. 1 (2022): 7–14. http://dx.doi.org/10.56768/jytp.1.1.02.
Full textPerenkov, Alexey D., Alena D. Sergeeva, Maria V. Vedunova, and Dmitri V. Krysko. "In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future." Vaccines 11, no. 10 (2023): 1600. http://dx.doi.org/10.3390/vaccines11101600.
Full textIlyichev, A. A., L. A. Orlova, S. V. Sharabrin, and L. I. Karpenko. "mRNA technology as one of the promising platforms for the SARS-CoV-2 vaccine development." Vavilov Journal of Genetics and Breeding 24, no. 7 (2020): 802–7. http://dx.doi.org/10.18699/vj20.676.
Full textCampbell, W. G., S. E. Gordon, C. J. Carlson, J. S. Pattison, M. T. Hamilton, and F. W. Booth. "Differential global gene expression in red and white skeletal muscle." American Journal of Physiology-Cell Physiology 280, no. 4 (2001): C763—C768. http://dx.doi.org/10.1152/ajpcell.2001.280.4.c763.
Full text