Academic literature on the topic 'Multi-Atlas de segmentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-Atlas de segmentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multi-Atlas de segmentation"

1

Kim, Sally Ji Who, Seongho Seo, Hyeon Sik Kim, et al. "Multi-atlas cardiac PET segmentation." Physica Medica 58 (February 2019): 32–39. http://dx.doi.org/10.1016/j.ejmp.2019.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asman, Andrew J., Lola B. Chambless, Reid C. Thompson, and Bennett A. Landman. "Out-of-atlas likelihood estimation using multi-atlas segmentation." Medical Physics 40, no. 4 (2013): 043702. http://dx.doi.org/10.1118/1.4794478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yuan, Fu Cang Jia, Xiao Dong Zhang, Cheng Huang, and Huo Ling Luo. "Local Patch Similarity Ranked Voxelwise STAPLE on Magnetic Resonance Image Hippocampus Segmentation." Applied Mechanics and Materials 333-335 (July 2013): 1065–70. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1065.

Full text
Abstract:
The segmentation and labeling of sub-cortical structures of interest are important tasks for the assessment of morphometric features in quantitative magnetic resonance (MR) image analysis. Recently, multi-atlas segmentation methods with statistical fusion strategy have demonstrated high accuracy in hippocampus segmentation. While, most of the segmentations rarely consider spatially variant model and reserve all segmentations. In this study, we propose a novel local patch-based and ranking strategy for voxelwise atlas selection to extend the original Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. The local ranking strategy is based on the metric of normalized cross correlation (NCC). Unlike its predecessors, this method estimates the fusion of each voxel patch-by-patch and makes use of gray image features as a prior. Validation results on 33 pairs of hippocampus MR images show good performance on the segmentation of hippocampus.
APA, Harvard, Vancouver, ISO, and other styles
4

Karasawa, Ken’ichi, Masahiro Oda, Takayuki Kitasaka, et al. "Multi-atlas pancreas segmentation: Atlas selection based on vessel structure." Medical Image Analysis 39 (July 2017): 18–28. http://dx.doi.org/10.1016/j.media.2017.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoang Duc, Albert K., Marc Modat, Kelvin K. Leung, et al. "Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation." PLoS ONE 8, no. 8 (2013): e70059. http://dx.doi.org/10.1371/journal.pone.0070059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hongzhi Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A. Yushkevich. "Multi-Atlas Segmentation with Joint Label Fusion." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 3 (2013): 611–23. http://dx.doi.org/10.1109/tpami.2012.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Manish Kumar, Mainak Jas, Vikrant Karale, Anup Sadhu, and Sudipta Mukhopadhyay. "Mammogram segmentation using multi-atlas deformable registration." Computers in Biology and Medicine 110 (July 2019): 244–53. http://dx.doi.org/10.1016/j.compbiomed.2019.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Antonelli, Michela, M. Jorge Cardoso, Edward W. Johnston, et al. "GAS: A genetic atlas selection strategy in multi-atlas segmentation framework." Medical Image Analysis 52 (February 2019): 97–108. http://dx.doi.org/10.1016/j.media.2018.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Tingting, and Dan Ruan. "Two-stage atlas subset selection in multi-atlas based image segmentation." Medical Physics 42, no. 6Part1 (2015): 2933–41. http://dx.doi.org/10.1118/1.4921138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huo, Yuankai, Jiaqi Liu, Zhoubing Xu, et al. "Robust Multicontrast MRI Spleen Segmentation for Splenomegaly Using Multi-Atlas Segmentation." IEEE Transactions on Biomedical Engineering 65, no. 2 (2018): 336–43. http://dx.doi.org/10.1109/tbme.2017.2764752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Multi-Atlas de segmentation"

1

Arbisser, Amelia M. "Multi-atlas segmentation in head and neck CT scans." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76905.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 45-46).<br>We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate contours for an unlabeled image, we employ an atlas of labeled training images. We register each of these images to the unlabeled target image, transform their structures, and then use a weighted voting method for label fusion. Our registration method starts with multi-resolution translational alignment, then applies a relatively higher resolution affine alignment. We then employ a diffeomorphic demons registration to deform each atlas to the space of the target image. Our weighted voting method considers one structure at a time to determine for each voxel whether or not it belongs to the structure. The weight for a voxel's vote from each atlas depends on the intensity difference of the target and the transformed gray scale atlas image at that voxel, in addition to the distance of that voxel from the boundary of the structure. We evaluate the method on a dataset of sixteen labeled images, generating automatic segmentations for each using the other fifteen images as the atlas. We evaluated the weighted voting method and a majority voting method by comparing the resulting segmentations to the manual segmentations using a volume overlap metric and the distances between contours. Both methods produce accurate segmentations, our method producing contours with boundaries usually only a few millimeters away from the manual contour. This could save physicians considerable time, because they only have to make small modifications to the outline instead of contouring the entire structure.<br>by Amelia M. Arbisser.<br>M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
2

Benkarim, Mohamed Oualid. "Multi-atlas segmentation and analysis of the fetal brain in ventriculomegaly." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/663747.

Full text
Abstract:
Nowadays, imaging of the human brain is vastly used in clinical settings and by the neuroscientific research community. There is an ever-increasing demand for novel biomedical image analysis approaches and tools to study the brain from its early intrauterine stage through adolescence to adulthood. The intrauterine period, in particular, is a crucial stage for the study of early neurodevelopmental processes. The idiosyncratic nature of the fetal brain poses numerous challenges and asks for the development of new techniques that take into consideration the peculiarities of in utero neurodevelopment. Although still in its infancy, medical image analysis techniques are progressively landing on the study of fetal brains. The purpose of this thesis is to develop automatic segmentation approaches that can be applied to brains at different life stages, including the gestational period, and investigate in utero brain development under ventriculomegaly.<br>En la actualidad, las imagenes del cerebro humano son ampliamente utilizadas en entornos clıınicos y por la comunidad neurocientııfica. Existe una demanda, cada vez mayor, de herramientas y enfoques de analisis de imagenes biomédicas novedosos para estudiar el cerebro desde su temprana etapa intrauterina hasta la adolescencia y la edad adulta. El periodo intrauterino, en particular, es una etapa crucial para el estudio de los procesos iniciales del neurodesarrollo. La naturaleza idiosincrasica del cerebro fetal plantea numerosos desafııos y requiere el desarrollo de nuevas técnicas que contemplen las peculiaridades del neurodesarrollo fetal. Aunque todavııa esta en su infancia, las técnicas de analisis de imagenes médicas estan llegando progresivamente al estudio de los cerebros fetales. El objetivo de esta tesis es desarrollar métodos automaticos de segmentación que puedan aplicarse a cerebros en distintas etapas de la vida, incluyendo el periodo gestacional, e investigar el desarrollo del cerebro fetal con ventriculomegalia.
APA, Harvard, Vancouver, ISO, and other styles
3

Arthofer, Christoph. "Multi-atlas segmentation using clustering, local non-linear manifold embeddings and target-specific templates." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50070/.

Full text
Abstract:
Multi-atlas segmentation (MAS) has become an established technique for the automated delineation of anatomical structures. The often manually annotated labels from each of multiple pre-segmented images (atlases) are typically transferred to a target through the spatial mapping of corresponding structures of interest. The mapping can be estimated by pairwise registration between each atlas and the target or by creating an intermediate population template for spatial normalisation of atlases and targets. The former is done at runtime which is computationally expensive but provides high accuracy. In the latter approach the template can be constructed from the atlases offline requiring only one registration to the target at runtime. Although this is computationally more efficient, the composition of deformation fields can lead to decreased accuracy. Our goal was to develop a MAS method which was both efficient and accurate. In our approach we create a target-specific template (TST) which has a high similarity to the target and serves as intermediate step to increase registration accuracy. The TST is constructed from the atlas images that are most similar to the target. These images are determined in low-dimensional manifold spaces on the basis of deformation fields in local regions of interest. We also introduce a clustering approach to divide atlas labels into meaningful sub-regions of interest and increase local specificity for TST construction and label fusion. Our approach was tested on a variety of MR brain datasets and applied to an in-house dataset. We achieve state-of-the-art accuracy while being computationally much more efficient than competing methods. This efficiency opens the door to the use of larger sets of atlases which could lead to further improvement in segmentation accuracy.
APA, Harvard, Vancouver, ISO, and other styles
4

Tor, díez Carlos. "Segmentation automatique de la surface corticale dans des IRM cérébrales des nouveaux-nés." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0152/document.

Full text
Abstract:
Des études cliniques sur les nouveau-nés prématurés montrent qu'une large proportion des grands prématurés (moins de 32 semaines d’aménorrhée) présentera des troubles cognitifs, moteurs ou comportementaux. Un objectif clinique est donc d’approfondir les études du développement cérébral et de détecter les anomalies chez les patients néonataux. Parmi les modalités d'imagerie, l'IRM peut fournir une information 3D morphologique, non-invasive, non ionisante et avec une résolution spatiale de l'ordre du millimètre, propriétés qui sont bien adaptées à cette problématique. En outre, la segmentation de ces images permet de fournir des informations quantitatives de l'anatomie, comme le volume ou la forme. Il existe de nombreuses méthodes pour l'IRM chez l'adulte. Néanmoins, la plupart d'entre elles ne peuvent pas s'appliquer directement chez le nouveau-né, où la maturation des tissus cérébraux induit des modifications de contraste dans l'image (dues, par exemple, à la non-myélinisation de la substance blanche). De plus, des détériorations visuelles, telles que les effets de volume partiels, se produisent par l'effet conjugué de la résolution des images et de la finesse des structures (par exemple, le cortex). Cette thèse se focalise sur la segmentation de la surface corticale des nouveau-nés en utilisant des images IRM, avec une précision satisfaisante pour des applications subséquentes (comme la génération de maillages surfaciques). Dans cette thèse, nous nous sommes intéressés dans un premier temps aux approches par atlas ou multi-atlas. Cette famille de méthodes est connue pour son efficacité en termes de segmentation cérébrale grâce à des a priori spatiaux intégrés au modèle, qui permettent de guider la segmentation. Néanmoins, le cortex étant une structure très fine, des erreurs topologiques peuvent se produire. Afin de résoudre ce problème, une étape de correction topologique multi échelle est mise en oeuvre. Les résultats montrent le potentiel de ces deux types d'approches pour l’analyse des données considérées<br>Clinical studies for preterm infants (less than 32 weeks of gestation) emphasize the fact that an important part of the very or extreme preterm infants will present cognitive, motor or behavioral disorders. The clinical aim is to improve brain development studies and be able to detect and predict abnormalities in neonatal subjects. Among the medical imaging, MRI can provide non-invasive non-ionizing morphological 3D images with a spatial resolution of the order of a millimeter, properties that are well adapted to this issue. In addition, the segmentation of these images provides quantitative anatomical information, such as volume or shape. There are many existing methods for adult MRI that successfully segment brain subparts. However, these methods cannot be directly applied to the newborn, where the maturation of brain tissue modifies the contrasts in the image (for example, the non-myelination of the white matter). Moreover, factors related to the resolution together with structural fineness, especially in the cortex, induce partial volume effects in tissue boundaries. This thesis focuses on the segmentation of the cortical surface in neonatal infants using MR images, with satisfactory accuracy for further applications (such as the generation of surface meshes). In this thesis, we first focused on the so-called atlas or multi-atlas approaches. This family of methods is known for its effectiveness in brain segmentation, thanks to spatial priors that can be embedded in the model for guiding the segmentation. However, since the neonatal cortex is very thin, there are often discontinuities or wrong connections. In order to tackle this issue, a topological correction step is proposed to fill gaps and separate erroneous connections. The results emphasize the potential of these two types of approaches for this purpose
APA, Harvard, Vancouver, ISO, and other styles
5

Cordier, Nicolas. "Approches multi-atlas fondées sur l'appariement de blocs de voxels pour la segmentation et la synthèse d'images par résonance magnétique de tumeurs cérébrales." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4111/document.

Full text
Abstract:
Cette thèse s'intéresse au développement de méthodes automatiques pour la segmentation et la synthèse d'images par résonance magnétique de tumeurs cérébrales. La principale perspective clinique de la segmentation des gliomes est le suivi de la vitesse d'expansion diamétrique dans le but d'adapter les solutions thérapeutiques. A cette fin, la thèse formalise au moyen de modèles graphiques probabilistes des approches de segmentation multi-atlas fondées sur l'appariement de blocs de voxels. Un premier modèle probabiliste prolonge à la segmentation automatique de régions cérébrales pathologiques les approches multi-atlas classiques de segmentation de structures anatomiques. Une approximation de l'étape de marginalisation remplace la notion de fenêtre de recherche locale par un tamisage par atlas et par étiquette. Un modèle de détection de gliomes fondé sur un a priori spatial et des critères de pré-sélection de blocs de voxels permettent d'obtenir des temps de calcul compétitifs malgré un appariement non local. Ce travail est validé et comparé à l'état de l'art sur des bases de données publiques. Un second modèle probabiliste, symétrique au modèle de segmentation, simule des images par résonance magnétique de cas pathologiques, à partir d'une unique segmentation. Une heuristique permet d'estimer le maximum a posteriori et l'incertitude du modèle de synthèse d'image. Un appariement itératif des blocs de voxels renforce la cohérence spatiale des images simulées. Le réalisme des images simulées est évalué avec de vraies IRM et des simulations de l'état de l'art. Le raccordement d'un modèle de croissance de tumeur permet de créer des bases d'images annotées synthétiques<br>This thesis focuses on the development of automatic methods for the segmentation and synthesis of brain tumor Magnetic Resonance images. The main clinical perspective of glioma segmentation is growth velocity monitoring for patient therapy management. To this end, the thesis builds on the formalization of multi-atlas patch-based segmentation with probabilistic graphical models. A probabilistic model first extends classical multi-atlas approaches used for the segmentation of healthy brains structures to the automatic segmentation of pathological cerebral regions. An approximation of the marginalization step replaces the concept of local search windows with a stratification with respect to both atlases and labels. A glioma detection model based on a spatially-varying prior and patch pre-selection criteria are introduced to obtain competitive running times despite patch matching being non local. This work is validated and compared to state-of-the-art algorithms on publicly available datasets. A second probabilistic model mirrors the segmentation model in order to synthesize realistic MRI of pathological cases, based on a single label map. A heuristic method allows to solve for the maximum a posteriori and to estimate uncertainty of the image synthesis model. Iterating patch matching reinforces the spatial coherence of synthetic images. The realism of our synthetic images is assessed against real MRI, and against outputs of the state-of-the-art method. The junction of a tumor growth model to the proposed synthesis approach allows to generate databases of annotated synthetic cases
APA, Harvard, Vancouver, ISO, and other styles
6

Guinin, Maxime. "Segmentation 3D des organes à risque du tronc masculin à partir d'images anatomiques TDM et IRM à l'aide de méthodes hybrides." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR019/document.

Full text
Abstract:
Le cancer de la prostate est une cause majeure de décès dans le monde. La radiothérapie externe est une des techniques utilisée pour traiter ce cancer. Pour ce faire, la segmentation de la prostate et de ses organes à risque (OAR) associés (le rectum, la vessie et les têtes fémorales) est une étape majeure dans l’application du traitement. L’objectif de cette thèse est de fournir des outils afin de segmenter la prostate et les OAR de manière automatique ou semi-automatique. Plusieurs approches ont été proposées ces dernières années pour répondre à ces problématiques. Les OAR possédant un contraste relativement bon dans l’image, nous nous sommes orientés vers une approche semi-automatique de leur segmentation, consistant en une sur-segmentation de l’image en petites régions homogènes appelées superpixels. L’utilisateur de la méthode choisit ensuite de labelliser quelques superpixels dans les OAR comme des germes. Enfin, la méthode segmente les OAR grâce à une diffusion sur le graphe (à partir des germes) construit par des superpixels. Quant à la segmentation de la prostate, un sous-volume de l’image appelé VOI (Volume Of Interest), dans lequel se trouve la prostate, est tout d’abord défini. À l’intérieur de ce VOI, la segmentation de la prostate est réalisée. Un dictionnaire composé des caractéristiques de textures extraites sur chaque patch du VOI est d’abord construit. La sélection de caractéristiques du dictionnaire sous contraintes parcimonieuses permet ensuite de trouver celles qui sont le plus informatives. Enfin, basé sur ces caractéristiques sélectionnées, une propagation de label de patch sous contrainte parcimonieuse est appliquée pour segmenter la prostate à deux échelles, superpixels et pixels. Notre méthode a été évaluée sur des images TDM du Centre Henri Becquerel et IRM du challenge ISBI 2013 avec des résultats prometteurs<br>Prostate cancer is a leading cause of death worldwide. External radiotherapy is one of the techniques used to this disease. In order to achieve this, the segmentation of the prostate and its associated organs at risk (OAR) (rectum, bladder and femoral heads) is a major step in the application of the treatment. The objective of this thesis is to provide tools to segment prostate and OAR automatically or semi-automatically. Several approaches have been proposed in recent years to address these issues. As OAR have a relatively good contrast in the image, we have focused on a semi-automatic approach to segment them, consisting of an over-segmentation of the image into small homogeneous regions called superpixels. Then, the user labels some superpixels in the OAR as germs. Finally, the OAR segmentation is performed by a graph diffusion (from germs) constructed by superpixels. Regarding the prostate segmentation, a sub-volume of the image called VOI (Volume Of Interest), in which the prostate is located, is first defined. The prostate segmentation is performed within this VOI. A dictionary composed of the texture characteristics extracted on each patch of the VOI is first constructed. Then, the selection of characteristics of the dictionary under parsimonious constraints allows to find the most informative ones. Finally, based on these selected characteristics, patch label propagation under parsimonious constraint is applied to segment the prostate at two scales, superpixels and pixels. Our method was evaluated with promising results on TDM images of the Henri Becquerel Center and IRM of the 2013 ISBI challenge
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, Kaikai. "Automatic segmentation and shape analysis of human hippocampus in Alzheimer's disease." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS072/document.

Full text
Abstract:
L’objectif de cette thèse est l’étude des changements de la forme de l’hippocampe due à l’atrophie causée par la maladie d’Alzheimer. Pour ce faire, des algorithmes et des méthodes ont été développés pour segmenter l’hippocampe à partir d’imagerie structurelle par résonance magnétique (IRM) et pour modéliser les variations dans sa forme. Nous avons utilisé une méthode de segmentation par propagation de multiple atlas pour la segmentation de l’hippocampe, méthode qui a été démontrée comme étant robuste dans la segmentation des structures cérébrales. Nous avons développé une méthode supervisée pour construire une base de données d’atlas spécifique à la population d’intérêt en propageant les parcellations d’une base de données génériques d’atlas. Les images correctement segmentées sont inspectées et ajoutées à la base de données d’atlas, de manière à améliorer sa capacité à segmenter de nouvelles images. Ces atlas sont évalués en termes de leur accord lors de la segmentation de nouvelles images. Comparé aux atlas génériques, les atlas spécifiques à la population d’intérêt obtiennent une plus grande concordance lors de la segmentation des des images provenant de cette population. La sélection d’atlas est utilisée pour améliorer la précision de la segmentation. La méthode classique de sélection basée sur la similarité des images est ici étendue pour prendre en compte la pertinence marginale maximale (MMR) et la régression des moindres angles (LAR). En prenant en considération la redondance parmi les atlas, des critères de diversité se montrent être plus efficace dans la sélection des atlas dans le cas où seul un nombre limité d’atlas peut-être fusionné. A partir des hippocampes segmentés, des modèles statistiques de la forme (SSM) sont construits afin de modéliser les variations de la forme de l’hippocampe dans la population. La correspondance entre les hippocampes est établie par une optimisation d’ensemble des surfaces paramétriques. Les paramétrages sphériques des surfaces sont aplatis pour faciliter la reparamétrisation et l’interpolation. Le reparamétrage est régularisé par une contrainte de type fluide visqueux, qui est effectué à l’aide d’une implémentation basée sur la transformées en sinus discrète. Afin d’utiliser le SSM pour décrire la forme d’une nouvelle surface hippocampique, nous avons développé un estimateur des paramètres du model de la forme basée sur l’espérance-maximisation de l’algorithme du plus proche voisin itéré (EM-ICP). Un terme de symétrie est inclus pour forcer une consistance entre la transformée directe et inverse entre le modèle et la forme, ce qui permet une reconstruction plus précise de la forme à partir du modèle. La connaissance a priori sur la forme modélisé par le SSM est utilisée dans l’estimation du maximum a posteriori des paramètres de forme. Cette méthode permet de forcer la continuité spatiale et éviter l’effet de sur-apprentissage. Dans l’étude de l’hippocampe dans la maladie d’Alzheimer, nous utilisons le SSM pour modéliser le changement de forme de l’hippocampe entre les sujets sains et des patients souffrant d’Alzheimer. Nous identifions les régions touchées par l’atrophie dans la maladie d’Alzheimer en évaluant la différence entre les groupes de contrôle et ceux d’Alzheimer sur chaque point correspondant sur la surface. L’analyse des changements de la forme est restreinte aux régions présentant des différences significatives entre les groupes, ce qui a pour effet d’améliorer la discrimination basée sur l’analyse en composantes principales (ACP) du SSM. Les composantes principales décrivant la variabilité de la forme à l’intérieur des régions discriminantes ont une corrélation plus fortes avec le déclin des scores de mémoire épisodique liée à la pathologie de l’hippocampe dans la maladie d’Alzheimer<br>The aim of this thesis is to investigate the shape change in hippocampus due to the atrophy in Alzheimer’s disease (AD). To this end, specific algorithms and methodologies were developed to segment the hippocampus from structural magnetic resonance (MR) images and model variations in its shape. We use a multi-atlas based segmentation propagation approach for the segmentation of hippocampus which has been shown to obtain accurate parcellation of brain structures. We developed a supervised method to build a population specific atlas database, by propagating the parcellations from a smaller generic atlas database. Well segmented images are inspected and added to the set of atlases, such that the segmentation capability of the atlas set may be enhanced. The population specific atlases are evaluated in terms of the agreement among the propagated labels when segmenting new cases. Compared with using generic atlases, the population specific atlases obtain a higher agreement when dealing with images from the target population. Atlas selection is used to improve segmentation accuracy. In addition to the conventional selection by image similarity ranking, atlas selection based on maximum marginal relevance (MMR) re-ranking and least angle regression (LAR) sequence are developed for atlas selection. By taking the redundancy among atlases into consideration, diversity criteria are shown to be more efficient in atlas selection which is applicable in the situation where the number of atlases to be fused is limited by the computational resources. Given the segmented hippocampal volumes, statistical shape models (SSMs) of hippocampi are built on the samples to model the shape variation among the population. The correspondence across the training samples of hippocampi is established by a groupwise optimization of the parameterized shape surfaces. The spherical parameterization of the hippocampal surfaces are flatten to facilitate the reparameterization and interpolation. The reparameterization is regularized by viscous fluid, which is solved by a fast implementation based on discrete sine transform. In order to use the hippocampal SSM to describe the shape of an unseen hippocampal surface, we developed a shape parameter estimator based on the expectationmaximization iterative closest points (EM-ICP) algorithm. A symmetric data term is included to achieve the inverse consistency of the transformation between the model and the shape, which gives more accurate reconstruction of the shape from the model. The shape prior modeled by the SSM is used in the maximum a posteriori estimation of the shape parameters, which is shown to enforce the smoothness and avoid the effect of over-fitting. In the study of the hippocampus in AD, we use the SSM to model the hippocampal shape change between the healthy control subjects and patients diagnosed with AD. We identify the regions affected by the atrophy in AD by assessing the spatial difference between the control and AD groups at each corresponding landmark. Localized shape analysis is performed on the regions exhibiting significant inter-group difference, which is shown to improve the discrimination ability of the principal component analysis (PCA) based SSM. The principal components describing the localized shape variability among the population are also shown to display stronger correlation with the decline of episodic memory scores linked to the pathology of hippocampus in AD
APA, Harvard, Vancouver, ISO, and other styles
8

González-Villà, Sandra. "Automated brain structure segmentation in magnetic resonance images of multiple sclerosis patients." Doctoral thesis, Universitat de Girona, 2019. http://hdl.handle.net/10803/667616.

Full text
Abstract:
This thesis is focused on the automated segmentation of the brain structures in magnetic resonance images, applied to multiple sclerosis patients. This disease is characterized by the presence of lesions, which affect the segmentation result of commonly used automatic methods. We propose a new correspondence search model able to minimize this problem and extend the theory of two remarkable label fusion strategies of the literature, i.e. Non-local Spatial STAPLE and Joint Label Fusion, in order to integrate this model into their corresponding estimation algorithms. Furthermore, with the aim of providing fully automated algorithms, a whole automated pipeline is presented. Finally, a second extension of the theory to enable the integration of manual and automatic edits into the segmentation estimation of both strategies is also proposed. The analysis of the results obtained points out a performance improvement on the lesion areas, which is also reflected on the whole brain segmentation performance<br>Aquesta tesi se centra en la segmentació automàtica de les estructures cerebrals en imatges de ressonància magnètica, aplicada a pacients d’esclerosi múltiple. Aquesta malaltia es caracteritza per la presència de lesions, que afecten els resultats de segmentació dels mètodes automàtics tradicionals. Per aquest motiu proposem un nou model de cerca de correspondències capaç de minimitzar aquest problema i estenem la teoria de dues estratègies notables de la literatura, Non-local Spatial STAPLE i Joint Label Fusion, per integrar aquest model en els seus corresponents algoritmes d’estimació. Amb l’objectiu de proporcionar algoritmes totalment automatitzats, es presenta una pipeline completa. Finalment, també es proposa una segona extensió de la teoria per permetre la integració d’anotacions manuals i automàtiques en les dues estratègies. L’anàlisi dels resultats obtinguts demostra una millora en el rendiment dels algorismes de segmentació en les àrees de lesió, que també es veu reflectida en la segmentació de tot el cervell
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Kai-kai. "Automatic segmentation and shape analysis of human hippocampus in Alzheimer's disease." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00703099.

Full text
Abstract:
The aim of this thesis is to investigate the shape change in hippocampus due to the atrophy in Alzheimer's disease (AD). To this end, specific algorithms and methodologies were developed to segment the hippocampus from structural magnetic resonance (MR) images and model variations in its shape. We use a multi-atlas based segmentation propagation approach for the segmentation of hippocampus which has been shown to obtain accurate parcellation of brain structures. We developed a supervised method to build a population specific atlas database, by propagating the parcellations from a smaller generic atlas database. Well segmented images are inspected and added to the set of atlases, such that the segmentation capability of the atlas set may be enhanced. The population specific atlases are evaluated in terms of the agreement among the propagated labels when segmenting new cases. Compared with using generic atlases, the population specific atlases obtain a higher agreement when dealing with images from the target population. Atlas selection is used to improve segmentation accuracy. In addition to the conventional selection by image similarity ranking, atlas selection based on maximum marginal relevance (MMR) re-ranking and least angle regression (LAR) sequence are developed for atlas selection. By taking the redundancy among atlases into consideration, diversity criteria are shown to be more efficient in atlas selection which is applicable in the situation where the number of atlases to be fused is limited by the computational resources. Given the segmented hippocampal volumes, statistical shape models (SSMs) of hippocampi are built on the samples to model the shape variation among the population. The correspondence across the training samples of hippocampi is established by a groupwise optimization of the parameterized shape surfaces. The spherical parameterization of the hippocampal surfaces are flatten to facilitate the reparameterization and interpolation. The reparameterization is regularized by viscous fluid, which is solved by a fast implementation based on discrete sine transform. In order to use the hippocampal SSM to describe the shape of an unseen hippocampal surface, we developed a shape parameter estimator based on the expectationmaximization iterative closest points (EM-ICP) algorithm. A symmetric data term is included to achieve the inverse consistency of the transformation between the model and the shape, which gives more accurate reconstruction of the shape from the model. The shape prior modeled by the SSM is used in the maximum a posteriori estimation of the shape parameters, which is shown to enforce the smoothness and avoid the effect of over-fitting. In the study of the hippocampus in AD, we use the SSM to model the hippocampal shape change between the healthy control subjects and patients diagnosed with AD. We identify the regions affected by the atrophy in AD by assessing the spatial difference between the control and AD groups at each corresponding landmark. Localized shape analysis is performed on the regions exhibiting significant inter-group difference, which is shown to improve the discrimination ability of the principal component analysis (PCA) based SSM. The principal components describing the localized shape variability among the population are also shown to display stronger correlation with the decline of episodic memory scores linked to the pathology of hippocampus in AD.
APA, Harvard, Vancouver, ISO, and other styles
10

Sandoval, Niño Zulma. "Planning and guidance of ultrasound guided High Intensity Focused Ultrasound cardiac arrhythmia therapy." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S044/document.

Full text
Abstract:
L'objectif des travaux présentés dans ce document est de développer de nouvelles méthodes de traitement d'images pour améliorer la planification et le guidage d'une thérapie par voie transœsophagienne de la fibrillation auriculaire à l'aide d'Ultrason Focalisé Haute Intensité. Le document est divisé en deux parties : la planification du traitement et le guidage de la thérapie. Pour la planification de la thérapie, l'idée est d'exploiter l'information acquise au stade préopératoire par un scanner X ou IRM afin de retrouver l'anatomie spécifique du patient et à y définir le futur geste thérapeutique. Plus particulièrement, nos différentes contributions ont porté sur une approche multi-atlas de segmentation de l'oreillette gauche et des veines pulmonaires ; le tracé des lignes de lésions sur le volume initial ou segmenté ; et la reconstruction d'un volume adapté à la future navigation transœsophagienne. Pour le guidage de la thérapie, nous proposons une nouvelle approche de recalage qui permet d'aligner les images échographiques peropératoires 2D et l'information 3D CT préopératoire. Dans cette approche, dans un premier temps nous avons sélectionné la mesure de similarité la plus adaptée à notre problématique à l'aide d'une évaluation systématique puis nous avons tiré profit des contraintes imposées à la sonde transœsophagienne par l'anatomie du patient pour simplifier la procédure de recalage. Toutes ces méthodes ont été évaluées sur des fantômes numériques ou physiques et sur des données cliniques<br>The work presented in this document aims at developing new image-processing methods to improve the planning and guidance of transesophageal HIFU atrial fibrillation therapy. This document is divided into two parts, namely therapy planning and therapy guidance. We first propose novel therapy planning methods that exploit high-resolution pre-operative CT or MRI information to extract patient-specific anatomical details and to define future therapeutic procedures. Our specific methodological contributions concern the following: an automatically-refined atlas-based segmentation approach to extract the left atrium and pulmonary veins; the delineation of the lesion lines on the original or segmented volume; and the reconstruction of a volume adapted to future intraoperative transesophageal navigation. Secondly, our proposal of a novel registration approach for use in therapy guidance aligns intraoperative 2D ultrasound with preoperative 3D CT information. This approach first carries out a systematic statistical evaluation to select the best similarity measure for our application and then takes advantage of the geometrical constraints of the transesophageal HIFU probe to simplify the registration process. Our proposed methods have been evaluated on digital and/or physical phantoms and on real clinical data
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multi-Atlas de segmentation"

1

Liu, Xiaofeng, Albert Montillo, Ek T. Tan, John F. Schenck, and Paulo Mendonca. "Deformable Atlas for Multi-structure Segmentation." In Advanced Information Systems Engineering. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40811-3_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rohlfing, Torsten, Daniel B. Russakoff, and Calvin R. Maurer. "Expectation Maximization Strategies for Multi-atlas Multi-label Segmentation." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45087-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sanroma, Gerard, Guorong Wu, Kim Thung, Yanrong Guo, and Dinggang Shen. "Novel Multi-Atlas Segmentation by Matrix Completion." In Machine Learning in Medical Imaging. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10581-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Dhamari, Ibraheem, Sabine Bauer, and Dietrich Paulus. "Automatic Multi-modal Cervical Spine Image Atlas Segmentation." In Bildverarbeitung für die Medizin 2018. Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56537-7_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hongzhi, and Paul A. Yushkevich. "Groupwise Segmentation with Multi-atlas Joint Label Fusion." In Advanced Information Systems Engineering. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40811-3_89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hongzhi, Yu Cao, and Tanveer Syeda-Mahmood. "Multi-atlas Segmentation with Learning-Based Label Fusion." In Machine Learning in Medical Imaging. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10581-9_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Glaister, Jeffrey, Aaron Carass, Dzung L. Pham, John A. Butman, and Jerry L. Prince. "Falx Cerebri Segmentation via Multi-atlas Boundary Fusion." In Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66182-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rohlfing, Torsten, Daniel B. Russakoff, and Calvin R. Maurer. "An Expectation Maximization-Like Algorithm for Multi-atlas Multi-label Segmentation." In Informatik aktuell. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-18993-7_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asman, Andrew J., and Bennett A. Landman. "Characterizing Spatially Varying Performance to Improve Multi-atlas Multi-label Segmentation." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22092-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Hengtong, Chenfei Ye, Jingbo Ma, Susumu Mori, and Heather T. Ma. "A New Atlas Pre-selection Approach for Multi-atlas Based Brain Segmentation." In International Conference on Biomedical and Health Informatics. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4505-9_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multi-Atlas de segmentation"

1

Alchatzidis, Stavros, Aristeidis Sotiras, and Nikos Paragios. "Local atlas selection for discrete multi-atlas segmentation." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7163888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alven, Jennifer, Fredrik Kahl, Matilda Landgren, Viktor Larsson, and Johannes Ulen. "Shape-aware multi-atlas segmentation." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7899783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Yi, Andrew Wilford, and Liang Guo. "Self-correcting multi-atlas segmentation." In SPIE Medical Imaging, edited by Martin A. Styner and Elsa D. Angelini. SPIE, 2016. http://dx.doi.org/10.1117/12.2217276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suh, J. W., M. Schaap, A. Lee, et al. "Automatic multi-atlas segmentation using dual registrations." In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hongzhi Wang and P. A. Yushkevich. "Spatial bias in multi-atlas based segmentation." In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng-Yi Liu, Juan Eugenio Iglesias, and Zhuowen Tu. "Pictorial multi-atlas segmentation of brain MRI." In 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). IEEE, 2012. http://dx.doi.org/10.1109/mmbia.2012.6164743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alchatzidis, Stavros, Aristeidis Sotiras, and Nikos Paragios. "Discrete Multi Atlas Segmentation using Agreement Constraints." In British Machine Vision Conference 2014. British Machine Vision Association, 2014. http://dx.doi.org/10.5244/c.28.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Daly, Asma, Hedi Yazid, Basel Solaiman, and Najoua Essoukri Ben Amara. "Multi-atlas based segmentation of human cerebellum." In 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2020. http://dx.doi.org/10.1109/ssd49366.2020.9364095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ding, Zhipeng, and Marc Niethammer. "Votenet++: Registration Refinement For Multi-Atlas Segmentation." In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huo, Yuankai, Jiaqi Liu, Zhoubing Xu, et al. "Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly." In SPIE Medical Imaging, edited by Martin A. Styner and Elsa D. Angelini. SPIE, 2017. http://dx.doi.org/10.1117/12.2254147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!