Academic literature on the topic 'Multi-label embedding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-label embedding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-label embedding"
Gupta, Vivek, Rahul Wadbude, Nagarajan Natarajan, Harish Karnick, Prateek Jain, and Piyush Rai. "Distributional Semantics Meets Multi-Label Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 3747–54. http://dx.doi.org/10.1609/aaai.v33i01.33013747.
Full textZhu, Pengfei, Qi Hu, Qinghua Hu, Changqing Zhang, and Zhizhao Feng. "Multi-view label embedding." Pattern Recognition 84 (December 2018): 126–35. http://dx.doi.org/10.1016/j.patcog.2018.07.009.
Full textYou, Renchun, Zhiyao Guo, Lei Cui, Xiang Long, Yingze Bao, and Shilei Wen. "Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (2020): 12709–16. http://dx.doi.org/10.1609/aaai.v34i07.6964.
Full textZhang, Jujie, Min Fang, and Huimin Chai. "Multi-label local discriminative embedding." Journal of Systems Engineering and Electronics 28, no. 5 (2017): 1009–18. http://dx.doi.org/10.21629/jsee.2017.05.19.
Full textShi, Min, Yufei Tang, and Xingquan Zhu. "MLNE: Multi-Label Network Embedding." IEEE Transactions on Neural Networks and Learning Systems 31, no. 9 (2020): 3682–95. http://dx.doi.org/10.1109/tnnls.2019.2945869.
Full textShi, Yaxin, Donna Xu, Yuangang Pan, Ivor W. Tsang, and Shirui Pan. "Label Embedding with Partial Heterogeneous Contexts." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4926–33. http://dx.doi.org/10.1609/aaai.v33i01.33014926.
Full textKumar, Vikas, Arun K. Pujari, Vineet Padmanabhan, and Venkateswara Rao Kagita. "Group preserving label embedding for multi-label classification." Pattern Recognition 90 (June 2019): 23–34. http://dx.doi.org/10.1016/j.patcog.2019.01.009.
Full textHuang, Kuan-Hao, and Hsuan-Tien Lin. "Cost-sensitive label embedding for multi-label classification." Machine Learning 106, no. 9-10 (2017): 1725–46. http://dx.doi.org/10.1007/s10994-017-5659-z.
Full textHuang, Jun, Qian Xu, Xiwen Qu, Yaojin Lin, and Xiao Zheng. "Improving Multi-Label Learning by Correlation Embedding." Applied Sciences 11, no. 24 (2021): 12145. http://dx.doi.org/10.3390/app112412145.
Full textKumar, Vikas, Arun K. Pujari, Vineet Padmanabhan, Sandeep Kumar Sahu, and Venkateswara Rao Kagita. "Multi-label classification using hierarchical embedding." Expert Systems with Applications 91 (January 2018): 263–69. http://dx.doi.org/10.1016/j.eswa.2017.09.020.
Full textDissertations / Theses on the topic "Multi-label embedding"
Wang, Qian. "Zero-shot visual recognition via latent embedding learning." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/zeroshot-visual-recognition-via-latent-embedding-learning(bec510af-6a53-4114-9407-75212e1a08e1).html.
Full textHuang, Kuan-Hao, and 黃冠豪. "Cost-sensitive Label Embedding for Multi-label Classification." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/05626650270566576330.
Full textChiu, Hsien-Chun, and 邱顯鈞. "Multi-label Classification with Feature-aware Cost-sensitive Label Embedding." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/fy6vw4.
Full textBook chapters on the topic "Multi-label embedding"
Wang, Yaqiang, Feifei Yan, Xiaofeng Wang, Wang Tang, and Hongping Shu. "Label Embedding Enhanced Multi-label Sequence Generation Model." In Natural Language Processing and Chinese Computing. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60457-8_18.
Full textKimura, Keigo, Mineichi Kudo, and Lu Sun. "Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification." In Lecture Notes in Computer Science. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_2.
Full textKumar, Sanjay, and Reshma Rastogi. "Auxiliary Label Embedding for Multi-label Learning with Missing Labels." In Computer Vision and Machine Intelligence. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7867-8_42.
Full textWang, Xidong, Jun Li, and Jianhua Xu. "A Label Embedding Method for Multi-label Classification via Exploiting Local Label Correlations." In Communications in Computer and Information Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36802-9_19.
Full textLiu, Yang, Guohua Dong, and Zhonglei Gu. "Sparse Multi-label Bilinear Embedding on Stiefel Manifolds." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01851-1_20.
Full textLi, Dan, Yunqian Li, Jun Li, and Jianhua Xu. "A Label Embedding Method via Conditional Covariance Maximization for Multi-label Classification." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39821-6_32.
Full textZhang, Xiangrong, Shouping Shan, Jing Gu, Xu Tang, and Licheng Jiao. "Multi-label Aerial Image Classification via Adjacency-Based Label and Feature Co-embedding." In Artificial Intelligence. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93046-2_33.
Full textLiang, Huadong, Dengdi Sun, Zhuanlian Ding, and Meiling Ge. "Protein Function Prediction Using Multi-label Learning and ISOMAP Embedding." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-49014-3_23.
Full textVanegas, Jorge A., Hugo Jair Escalante, and Fabio A. González. "Semi-supervised Online Kernel Semantic Embedding for Multi-label Annotation." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75193-1_83.
Full textGao, Kaisheng, Jing Zhang, and Cangqi Zhou. "Semi-supervised Graph Embedding for Multi-label Graph Node Classification." In Web Information Systems Engineering – WISE 2019. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34223-4_35.
Full textConference papers on the topic "Multi-label embedding"
Gu, Qiliang, Shuo Zhao, Jianqiang Zhang, Gongpeng Song, and Qin Lu. "MFFLEN: Multi-Label Text Classification Based on Multi-Feature Fusion and Label Embedding." In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10831836.
Full textXia, Peng, Di Xu, Ming Hu, Lie Ju, and Zongyuan Ge. "LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-Tailed Multi-Label Visual Recognition." In Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.alvr-1.3.
Full textCheniki, Nasredine, Vidas Daudaravicius, Abdelfettah Feliachi, Didier Hardy, and Marc Wilhelm Küster. "Multi-Property Multi-Label Documents Metadata Recommendation based on Encoder Embeddings." In Proceedings of the Natural Legal Language Processing Workshop 2024. Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.nllp-1.19.
Full textWertz, Lukas, Jasmina Bogojeska, Katsiaryna Mirylenka, and Jonas Kuhn. "Evaluating Pre-Trained Sentence-BERT with Class Embeddings in Active Learning for Multi-Label Text Classification." In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-short.45.
Full textTang, Lin, Lin Liu, and Jianhou Gan. "Multi-Label Topic Model Conditioned on Label Embedding." In 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI). IEEE, 2019. http://dx.doi.org/10.1109/csei47661.2019.8938881.
Full textWang, Lichen, Zhengming Ding, and Yun Fu. "Adaptive Graph Guided Embedding for Multi-label Annotation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/388.
Full textPeng, Cheng-Lun, An Tao, and Xin Geng. "Label Embedding Based on Multi-Scale Locality Preservation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/364.
Full textChiu, Hsien-Chun, and Hsuan-Tien Lin. "Multi-Label Classification with Feature-Aware Cost-Sensitive Label Embedding." In 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI). IEEE, 2018. http://dx.doi.org/10.1109/taai.2018.00018.
Full textGong, Xiuwen, Dong Yuan, and Wei Bao. "Fast Multi-label Learning." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/335.
Full textNiu, Sijia, Qian Xu, Pengfei Zhu, Qinghua Hu, and Hong Shi. "Coupled Dictionary Learning for Multi-label Embedding." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852201.
Full text