Academic literature on the topic 'Multi-model inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-model inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-model inference"
Millington, James D. A., and George L. W. Perry. "Multi-Model Inference in Biogeography." Geography Compass 5, no. 7 (July 2011): 448–63. http://dx.doi.org/10.1111/j.1749-8198.2011.00433.x.
Full textWANG, Hui-Zhen, and Jing-Bo ZHU. "Optimizations of Multi-Aspect Rating Inference Model." Journal of Software 24, no. 7 (January 16, 2014): 1545–56. http://dx.doi.org/10.3724/sp.j.1001.2013.04278.
Full textTheorell, Axel, and Katharina Nöh. "Reversible jump MCMC for multi-model inference in Metabolic Flux Analysis." Bioinformatics 36, no. 1 (June 19, 2019): 232–40. http://dx.doi.org/10.1093/bioinformatics/btz500.
Full textMao, W., and J. Gratch. "Modeling Social Causality and Responsibility Judgment in Multi-Agent Interactions." Journal of Artificial Intelligence Research 44 (May 30, 2012): 223–73. http://dx.doi.org/10.1613/jair.3526.
Full textKatsanevakis, Stelios. "Modelling fish growth: Model selection, multi-model inference and model selection uncertainty." Fisheries Research 81, no. 2-3 (November 2006): 229–35. http://dx.doi.org/10.1016/j.fishres.2006.07.002.
Full textLee, Bong-Keun, Jae-Du Chung, and Keun-Ho Ryu. "Multi-Agent Reinforcement Learning Model based on Fuzzy Inference." Journal of the Korea Contents Association 9, no. 10 (October 28, 2009): 51–58. http://dx.doi.org/10.5392/jkca.2009.9.10.051.
Full textYao, Yuan, Hanghang Tong, Xifeng Yan, Feng Xu, and Jian Lu. "Multi-Aspect + Transitivity + Bias: An Integral Trust Inference Model." IEEE Transactions on Knowledge and Data Engineering 26, no. 7 (July 2014): 1706–19. http://dx.doi.org/10.1109/tkde.2013.147.
Full textStumpf, Michael P. H., and Thomas Thorne. "Multi-model inference of network properties from incomplete data." Journal of Integrative Bioinformatics 3, no. 2 (December 1, 2006): 123–36. http://dx.doi.org/10.1515/jib-2006-32.
Full textMu, He-Qing, Han-Teng Liu, and Ji-Hui Shen. "Copula-Based Uncertainty Quantification (Copula-UQ) for Multi-Sensor Data in Structural Health Monitoring." Sensors 20, no. 19 (October 6, 2020): 5692. http://dx.doi.org/10.3390/s20195692.
Full textLiu, Jingyu, Qiong Wang, Dunbo Zhang, and Li Shen. "Super-Resolution Model Quantized in Multi-Precision." Electronics 10, no. 17 (September 6, 2021): 2176. http://dx.doi.org/10.3390/electronics10172176.
Full textDissertations / Theses on the topic "Multi-model inference"
Çetin, Özgür. "Multi-rate modeling, model inference, and estimation for statistical classifiers /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5849.
Full textLessios, Nicolas. "Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels." PEERJ INC, 2017. http://hdl.handle.net/10150/625519.
Full textJiang, Huijing. "Statistical computation and inference for functional data analysis." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37087.
Full textHamadeh, Lina. "Periodically integrated models : estimation, simulation, inference and data analysis." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/periodically-integrated-models-estimation-simulation-inference-and-data-analysis(f7b345e9-bad7-424a-9746-bfe771d7ba8c).html.
Full textWinkler, Anderson M. "Widening the applicability of permutation inference." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ce166876-0aa3-449e-8496-f28bf189960c.
Full textVatka, E. (Emma). "Boreal populations facing climatic and habitat changes." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526203607.
Full textTiivistelmä Ihmisen aiheuttama habitaattien katoaminen ja huononeminen sekä ilmastonmuutos vaikuttavat populaatioihin kaikkialla maailmassa. Ilmaston lämpeneminen on muuttanut monien lajien fenologioita eri trofiatasoilla. Osalla saalistajalajien populaatioista suurin ravinnontarve ei enää ajoitu samaan aikaan saaliin runsaushuipun kanssa. Ajoituksen eriaikaisuus -hypoteesin mukaan todennäköisyys populaatioon rekrytoitumiselle riippuu synkronian asteesta saaliin kanssa. Ilmaston lämpenemisen vaikutuksissa lajeihin ja populaatioihin on kuitenkin vaihtelua. Ihmisen maankäyttö muuttaa ja tuhoaa lukuisien lajien elinympäristöjä. Esimerkiksi useiden boreaalisten metsien lintupopulaatioiden pienentymistä on selitetty intensiivisellä metsätaloudella. Lahopuun määrä metsissä on vähentynyt, mikä on uhka lahopuusta riippuvaisille lajeille. Korkealaatuisten habitaattien keskeisten piirteiden tunnistaminen on tärkeää luonnonsuojelun ja kestävän metsätalouden suunnittelulle. Koska yksilöiden oletetaan valitsevan niiden kelpoisuutta maksimoivia elinympäristöjä, pesäpaikanvalinta-analyysiä voidaan käyttää tärkeiden habitaattipiirteiden tunnistamiseen. Tarkastelen väitöskirjassani ilmastonmuutoksen ja habitaattien laadun vaikutuksia boreaalisiin populaatioihin. Mallilajeina käytän koloissa pesiviä varpuslintuja. Hyödyntämällä pitkäaikaisaineistoja osoitan, että lisääntymisen ajoittuminen on aikaistunut tali- ja hömötiaisella, mutta ei sinitiaisella. Myös ravintohuippu on aikaistunut, mikä on parantanut synkroniaa hömötiaisen ja sen pääasiallisen ravinnon eli toukkien välillä. Tali- ja sinitiaisella synkronia on pysynyt hyvänä. Hyvän synkronian myönteinen vaikutus lisääntymismenestykseen vaikuttaa kuitenkin ehdolliselta: se tulee esiin vain tietyissä olosuhteissa, kuten vuosina jolloin toukkia on runsaasti. Kevään lämpötilat näyttävät vaikuttavan pesinnän ajoittumiseen erityisesti proksimaattisena tekijänä. Pesäpaikkoina toimivien seisovien lahopuiden määrä on tärkein hömötiaisen pesäpaikanvalintaa määräävä tekijä. Kaukokartoitusaineisto yksinään ei riitä luotettavien mallien tuottamiseen, sillä ekologisesti tärkeät pienen skaalan tekijät voidaan kartoittaa vain suorin maastomittauksin. Metsien harventamatta jättäminen valituilla laikuilla turvaisi lahopuun jatkuvan saatavuuden, mikä vaikuttaisi myönteisesti talousmetsien biodiversiteettiin
Reynolds, Toby J. "Bayesian modelling of integrated data and its application to seabird populations." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1635.
Full text(7582487), Ching-Wei Cheng. "Enhancing Multi-model Inference with Natural Selection." Thesis, 2019.
Find full textLambert, Valere Regis Westbrooke. "Multi-Model Inference Ranking and Applications to Physics at the Large Hadron Collider." Thesis, 2014. https://thesis.library.caltech.edu/8520/1/Thesis.pdf.
Full text(9154928), Aritra Mitra. "New Approaches to Distributed State Estimation, Inference and Learning with Extensions to Byzantine-Resilience." Thesis, 2020.
Find full textBooks on the topic "Multi-model inference"
Burnham, Kenneth P., and David Anderson. Model Selection and Multi-Model Inference. Springer, 2003.
Find full textBook chapters on the topic "Multi-model inference"
Tozzo, Veronica, and Annalisa Barla. "Multi-parameters Model Selection for Network Inference." In Complex Networks and Their Applications VIII, 566–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36687-2_47.
Full textYang, Tianbao, Lei Wu, and Piero P. Bonissone. "A Directed Inference Approach towards Multi-class Multi-model Fusion." In Multiple Classifier Systems, 352–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38067-9_31.
Full textWang, Jianyu, Debin Zhao, Shiguang Shan, and Wen Gao. "Approximating Inference on Complex Motion Models Using Multi-model Particle Filter." In Advances in Multimedia Information Processing - PCM 2004, 1011–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30542-2_124.
Full textNickles, Matthias. "Sampling-Based SAT/ASP Multi-model Optimization as a Framework for Probabilistic Inference." In Inductive Logic Programming, 88–104. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99960-9_6.
Full textNijkamp, Erik, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu, and Ying Nian Wu. "Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference." In Computer Vision – ECCV 2020, 361–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58539-6_22.
Full textLendvai, Piroska. "Towards a Discourse-driven Taxonomic Inference Model." In Interactive Multi-modal Question-Answering, 247–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17525-1_11.
Full textMihailescu, Radu-Casian, Paul Davidsson, and Jan Persson. "Multiagent Model for Agile Context Inference Based on Articial Immune Systems and Sparse Distributed Representations." In Multi-Agent Systems and Agreement Technologies, 82–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33509-4_7.
Full text"Appendix D: Parsimony, Prediction, and Multi-Model Inference." In Decision Making in Natural Resource Management: A Structured, Adaptive Approach, 373–83. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118506196.app4.
Full textJovančić, Predrag D., Miloš Tanasijević, Vladimir Milisavljević, Aleksandar Cvjetić, Dejan Ivezić, and Uglješa Srbislav Bugarić. "Applying the Fuzzy Inference Model in Maintenance Centered to Safety." In Advances in Civil and Industrial Engineering, 142–65. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3904-0.ch009.
Full textCasillas, Luis, Adriana Peña, and Alfredo Gutierrez. "Towards an Automated Model to Evaluate Collaboration Through Non-Verbal Interaction in Collaborative Virtual Environments." In Intelligent Systems, 1570–86. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5643-5.ch068.
Full textConference papers on the topic "Multi-model inference"
Shi, Peiqi, Feng Gao, Songtao Liang, and Shanjin Yu. "Multi-Model Inference Acceleration on Embedded Multi-Core Processors." In 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI). IEEE, 2020. http://dx.doi.org/10.1109/ichci51889.2020.00090.
Full textBrownlees, Christian T., Simone Contini, Riccardo Di Meo, and Valerio Sullo. "Financial Risk Management Via Multi Model Inference GRID Applications." In 1st International Workshop on Grid Technology for Financial Modeling and Simulation. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.026.0004.
Full textWang, Jin, Chen Wang, Qingming Huang, Yunhui Shi, Jian-Feng Cai, Qing Zhu, and Baocai Yin. "Image Inpainting Based on Multi-frequency Probabilistic Inference Model." In MM '20: The 28th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394171.3413891.
Full textHan, Qilong, Dan Lu, and Rui Chen. "Fine-Grained Air Quality Inference via Multi-Channel Attention Model." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/346.
Full textLiu, Chongyu, Rui Yao, S. Hamid Rezatofighi, Ian Reid, and Qinfeng Shi. "Multi-Object Model-Free Tracking with Joint Appearance and Motion Inference." In 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2017. http://dx.doi.org/10.1109/dicta.2017.8227468.
Full textZEITVOGEL, Samuel, and Astrid LAUBENHEIMER. "An Open-Source Articulated Multi-Person Shape Model Training and Inference Pipeline." In 3DBODY.TECH 2020 - 11th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Online/Virtual, 17-18 November 2020. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2020. http://dx.doi.org/10.15221/20.17.
Full textYan, Fu. "The design for restructuring translation model based on multi-feature inference hypothesis." In 2015 International Symposium on Computers and Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/isci-15.2015.61.
Full textPei, Wei, and Yong-ying Zhu. "A Multi-factor Classified Runoff Forecast Model Based on Rough Fuzzy Inference Method." In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2008. http://dx.doi.org/10.1109/fskd.2008.336.
Full textLiu, Hao, Lirong He, Haoli Bai, Bo Dai, Kun Bai, and Zenglin Xu. "Structured Inference for Recurrent Hidden Semi-markov Model." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/339.
Full textTawara, Naohiro, Tetsuji Ogawa, Shinji Watanabe, and Tetsunori Kobayashi. "Fully Bayesian inference of multi-mixture Gaussian model and its evaluation using speaker clustering." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6289105.
Full textReports on the topic "Multi-model inference"
Grace, Matthew, Thomas Stephen Lowry, Bill Walter Arnold, Scott Carlton James, Genetha Anne Gray, and Michael Ahlmann. SNL-NUMO collaborative : development of a deterministic site characterization tool using multi-model ranking and inference. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/947331.
Full text