Academic literature on the topic 'Multi-parametric brain imaging data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-parametric brain imaging data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-parametric brain imaging data"
Chiu, Fang-Ying, and Yun Yen. "Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach." Cancers 14, no. 6 (March 14, 2022): 1475. http://dx.doi.org/10.3390/cancers14061475.
Full textHayasaka, Satoru, An-Tao Du, Audrey Duarte, John Kornak, Geon-Ho Jahng, Michael W. Weiner, and Norbert Schuff. "A non-parametric approach for co-analysis of multi-modal brain imaging data: Application to Alzheimer's disease." NeuroImage 30, no. 3 (April 2006): 768–79. http://dx.doi.org/10.1016/j.neuroimage.2005.10.052.
Full textMutihac, Radu. "Thresholding Wavelet-Based Statistical Parametric Maps of Functional Brain Imaging Data." NeuroImage 47 (July 2009): S124. http://dx.doi.org/10.1016/s1053-8119(09)71189-9.
Full textAutry, Adam, Sana Vaziri, Marisa LaFontaine, Jeremy Gordon, Hsin-Yu Chen, Javier Villanueva-Meyer, Susan Chang, et al. "NIMG-43. ADVANCED MULTI-PARAMETRIC HYPERPOLARIZED 13C/1H IMAGING OF GBM." Neuro-Oncology 23, Supplement_6 (November 2, 2021): vi138. http://dx.doi.org/10.1093/neuonc/noab196.542.
Full textWang, Meiling, Wei Shao, Xiaoke Hao, Shuo Huang, and Daoqiang Zhang. "Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis." Bioinformatics 38, no. 8 (February 10, 2022): 2323–32. http://dx.doi.org/10.1093/bioinformatics/btac074.
Full textMohammed Danfulani and Shamsuddeen Ahmad Aliyu. "The role of multi-parametric magnetic resonance imaging (MRI) in early prediction of malignant transformation of low-grade Gliomas (A Systematic review)." GSC Advanced Research and Reviews 5, no. 3 (December 30, 2020): 014–29. http://dx.doi.org/10.30574/gscarr.2020.5.3.0122.
Full textTsolaki, Evangelia, Patricia Svolos, Evanthia Kousi, Eftychia Kapsalaki, Ioannis Fezoulidis, Konstantinos Fountas, Kyriaki Theodorou, Constantine Kappas, and Ioannis Tsougos. "Fast spectroscopic multiple analysis (FASMA) for brain tumor classification: a clinical decision support system utilizing multi-parametric 3T MR data." International Journal of Computer Assisted Radiology and Surgery 10, no. 7 (July 15, 2014): 1149–66. http://dx.doi.org/10.1007/s11548-014-1088-7.
Full textShi, Min, Dong Dong Yang, Yuan Zhou, Huan Zhao, and Yu Fang. "Analysis of Migraine Induced Monitoring Imaging Data by Multilayer Mixed Cluster Detection." Journal of Medical Imaging and Health Informatics 9, no. 6 (August 1, 2019): 1278–83. http://dx.doi.org/10.1166/jmihi.2019.2729.
Full textChen, Ping-Feng, R. Grant Steen, Anthony Yezzi, and Hamid Krim. "Joint Brain Parametric -Map Segmentation and RF Inhomogeneity Calibration." International Journal of Biomedical Imaging 2009 (2009): 1–14. http://dx.doi.org/10.1155/2009/269525.
Full textZhang, Jiang, Huafu Chen, Fang Fang, Hualin Liu, and Wei Liao. "A FREQUENCY SIGNAL METHOD FOR fMRI DATA ANALYSIS." Biomedical Engineering: Applications, Basis and Communications 22, no. 05 (October 2010): 377–83. http://dx.doi.org/10.4015/s1016237210002134.
Full textDissertations / Theses on the topic "Multi-parametric brain imaging data"
Wang, Dingqian. "Quantitative analysis with machine learning models for multi-parametric brain imaging data." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/22245.
Full textIon-Margineanu, Adrian. "Machine learning for classifying abnormal brain tissue progression based on multi-parametric Magnetic Resonance data." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1224/document.
Full textMachine learning is a subdiscipline in the field of artificial intelligence, which focuses on algorithms capable of adapting their parameters based on a set of observed data, by optimizing an objective or cost function. Machine learning has been the subject of large interest in the biomedical community because it can improve sensitivity and/or specificity of detection and diagnosis of any disease, while increasing the objectivity of the decision-making process. With the late increase in volume and complexity of medical data being collected, there is a clear need for applying machine learning algorithms in multi-parametric analysis for new detection and diagnostic modalities. Biomedical imaging is becoming indispensable for healthcare, as multiple modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography, and Positron Emission Tomography, are being increasingly used in both research and clinical settings. The non-invasive standard for brain imaging is MRI, as it can provide structural and functional brain maps with high resolution, all within acceptable scanning times. However, with the increase of MRI data volume and complexity, it is becoming more time consuming and difficult for clinicians to integrate all data and make accurate decisions. The aim of this thesis is to develop machine learning methods for automated preprocessing and diagnosis of abnormal brain tissues, in particular for the followup of glioblastoma multiforme (GBM) and multiple sclerosis (MS). Current conventional MRI (cMRI) techniques are very useful in detecting the main features of brain tumours and MS lesions, such as size and location, but are insufficient in specifying the grade or evolution of the disease. Therefore, the acquisition of advanced MRI, such as perfusion weighted imaging (PWI), diffusion kurtosis imaging (DKI), and magnetic resonance spectroscopic imaging (MRSI), is necessary to provide complementary information such as blood flow, tissue organisation, and metabolism, induced by pathological changes. In the GBM experiments our aim is to discriminate and predict the evolution of patients treated with standard radiochemotherapy and immunotherapy based on conventional and advanced MRI data. In the MS experiments our aim is to discriminate between healthy subjects and MS patients, as well as between different MS forms, based only on clinical and MRSI data. As a first experiment in GBM follow-up, only advanced MRI parameters were explored on a relatively small subset of patients. Average PWI parameters computed on manually delineated regions of interest (ROI) were found to be perfect biomarkers for predicting GBM evolution one month prior to the clinicians. In a second experiment in GBM follow-up of a larger subset of patients, MRSI was replaced by cMRI, while PWI and DKI parameter quantification was automated. Feature extraction was done on semi-manual tumour delineations, thereby reducing the time put by the clinician for manual delineating the contrast enhancing (CE) ROI. Learning a modified boosting algorithm on features extracted from semi-manual ROIs was shown to provide very high accuracy results for GBM diagnosis. In a third experiment in GBM follow-up of an extended subset of patients, a modified version of parametric response maps (PRM) was proposed to take into account the most likely infiltration area of the tumour, reducing even further the time a clinician would have to put for manual delineating the tumour, because all subsequent MRI scans were registered to the first one. Two types of computing PRM were compared, one based on cMRI and one based on PWI, as features extracted with these two modalities were the best in discriminating the GBM evolution, according to results from the previous two experiments. Results obtained within this last GBM analysis showed that using PRM based on cMRI is clearly superior to using PRM based on PWI [etc…]
Martens, Corentin. "Patient-Derived Tumour Growth Modelling from Multi-Parametric Analysis of Combined Dynamic PET/MR Data." Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/320127/5/contratCM.pdf.
Full textLes gliomes sont les tumeurs cérébrales primitives les plus communes et sont associés à un mauvais pronostic. Parmi ces derniers, les gliomes diffus – qui incluent la forme la plus agressive, le glioblastome (GBM) – sont connus pour être hautement infiltrants. Le diagnostic et le suivi des gliomes s'appuient sur la tomographie par émission de positons (TEP) ainsi que l'imagerie par résonance magnétique (IRM). Cependant, ces techniques d'imagerie ne permettent actuellement pas d'évaluer l'étendue totale de tumeurs aussi infiltrantes ni d'anticiper leurs schémas d'invasion préférentiels, conduisant à une planification sous-optimale du traitement. La modélisation mathématique de la croissance tumorale a été proposée pour répondre à ce problème. Les modèles de croissance tumorale de type réaction-diffusion, qui sont probablement les plus communément utilisés pour la modélisation de la croissance des gliomes diffus, proposent de capturer la prolifération et la migration des cellules tumorales au moyen d'une équation aux dérivées partielles. Bien que le potentiel de tels modèles ait été démontré dans de nombreux travaux pour le suivi des patients et la planification de thérapies, seules quelques applications cliniques restreintes semblent avoir émergé de ces derniers. Ce travail de thèse a pour but de revisiter les modèles de croissance tumorale de type réaction-diffusion en utilisant des technologies de pointe en imagerie médicale et traitement de données, avec pour objectif d'y intégrer des données TEP/IRM multi-paramétriques pour personnaliser davantage le modèle. Le problème de la segmentation des tissus cérébraux dans les images IRM est d'abord adressé, avec pour but de définir un domaine propre au patient pour la résolution du modèle. Une méthode proposée précédemment permettant de dériver un tenseur de diffusion tumoral à partir du tenseur de diffusion de l'eau évalué par imagerie DTI a ensuite été implémentée afin de guider la migration anisotrope des cellules tumorales le long des fibres de matière blanche. L'utilisation de l'imagerie TEP dynamique à la [S-méthyl-11C]méthionine ([11C]MET) est également investiguée pour la génération de cartes de potentiel prolifératif propre au patient afin de nourrir le modèle. Ces investigations ont mené au développement d'un modèle compartimental pour le transport des traceurs TEP dérivés des acides aminés dans les gliomes. Sur base des résultats du modèle compartimental, une nouvelle méthodologie est proposée utilisant l'analyse en composantes principales pour extraire des cartes paramétriques à partir de données TEP dynamiques à la [11C]MET. Le problème de l'estimation des conditions initiales du modèle à partir d'images IRM est ensuite adressé par le biais d'une étude translationelle combinant IRM et histologie menée sur un cas de GBM non-opéré. Différentes stratégies de résolution numérique basées sur les méthodes des différences et éléments finis sont finalement implémentées et comparées. Tous ces développements sont embarqués dans un framework commun permettant d'étudier in silico la croissance des gliomes et fournissant une base solide pour de futures recherches dans le domaine. Cependant, certaines hypothèses communément admises reliant les délimitations des anormalités visibles en IRM à des iso-contours de densité de cellules tumorales ont été invalidée par l'étude translationelle menée, laissant ouverte les questions de l'initialisation et de la validation du modèle. Par ailleurs, l'analyse de l'évolution temporelle de cas réels de gliomes multi-traités démontre les limitations du modèle. Ces dernières affirmations mettent en évidence les obstacles actuels à l'application clinique de tels modèles et ouvrent la voie à de nouvelles possibilités d'amélioration.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Laruelo, Fernandez Andrea. "Integration of magnetic resonance spectroscopic imaging into the radiotherapy treatment planning." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30126/document.
Full textThe aim of this thesis is to propose new algorithms to overcome the current limitations and to address the open challenges in the processing of magnetic resonance spectroscopic imaging (MRSI) data. MRSI is a non-invasive modality able to provide the spatial distribution of relevant biochemical compounds (metabolites) commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate and reliable information from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique. Despite the numerous publications on the topic, the interpretation of MRSI data is still a challenging problem due to different factors such as the low signal-to-noise ratio (SNR) of the signals, the overlap of spectral lines or the presence of nuisance components. This thesis addresses the problem of interpreting MRSI data and characterizing recurrence in tumor brain patients. These objectives are addressed through a methodological approach based on novel processing methods that incorporate prior knowledge on the MRSI data using a spatio-spectral regularization. As an application, the thesis addresses the integration of MRSI into the radiotherapy treatment workflow within the context of the European project SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) founded by the European Commission (FP7-PEOPLE-ITN framework)
Winkler, Anderson M. "Widening the applicability of permutation inference." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ce166876-0aa3-449e-8496-f28bf189960c.
Full text"Multi-view machine learning for integration of brain imaging and (epi)genomics data." Tulane University, 2021.
Find full text"Multi-parametric MRI Study of Brain Insults (Traumatic Brain Injury and Brain Tumor) in Animal Models." Master's thesis, 2014. http://hdl.handle.net/2286/R.I.25894.
Full textDissertation/Thesis
Masters Thesis Bioengineering 2014
Book chapters on the topic "Multi-parametric brain imaging data"
Ning, Munan, Cheng Bian, Chenglang Yuan, Kai Ma, and Yefeng Zheng. "Ensembled ResUnet for Anatomical Brain Barriers Segmentation." In Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 27–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71827-5_3.
Full textKawai, Shigeharu, Yositaka Oku, Yasumasa Okada, Fumikazu Miwakeichi, Makio Ishiguro, and Yoshiyasu Tamura. "Parametric Modeling Analysis of Optical Imaging Data on Neuronal Activities in the Brain." In Computational Neuroscience, 213–25. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-88630-5_12.
Full textGay, Skylar S., Cenji Yu, Dong Joo Rhee, Carlos Sjogreen, Raymond P. Mumme, Callistus M. Nguyen, Tucker J. Netherton, Carlos E. Cardenas, and Laurence E. Court. "A Bi-directional, Multi-modality Framework for Segmentation of Brain Structures." In Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 49–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71827-5_6.
Full textMardal, Kent-André, Marie E. Rognes, Travis B. Thompson, and Lars Magnus Valnes. "Concluding Remarks and Outlook." In Mathematical Modeling of the Human Brain, 109–10. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95136-8_7.
Full textLanghans, Marco, Tobias Fechter, Dimos Baltas, Harald Binder, and Thomas Bortfeld. "Automatic Segmentation of Brain Structures for Treatment Planning Optimization and Target Volume Definition." In Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 40–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71827-5_5.
Full textZou, Xiaoyang, and Qi Dou. "Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread." In Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 16–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71827-5_2.
Full textShusharina, Nadya, Thomas Bortfeld, Carlos Cardenas, Brian De, Kevin Diao, Soleil Hernandez, Yufei Liu, Sean Maroongroge, Jonas Söderberg, and Moaaz Soliman. "Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization." In Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 3–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71827-5_1.
Full textYan, Zhennan, Shaoting Zhang, Xiaofeng Liu, Dimitris N. Metaxas, and Albert Montillo. "Accurate Whole-Brain Segmentation for Alzheimer’s Disease Combining an Adaptive Statistical Atlas and Multi-atlas." In Medical Computer Vision. Large Data in Medical Imaging, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05530-5_7.
Full textYan, Zhennan, Shaoting Zhang, Xiaofeng Liu, Dimitris N. Metaxas, and Albert Montillo. "Accurate Whole-Brain Segmentation for Alzheimer’s Disease Combining an Adaptive Statistical Atlas and Multi-atlas." In Medical Computer Vision. Large Data in Medical Imaging, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14104-6_7.
Full textBaniasadi, Mehri, Andreas Husch, Daniele Proverbio, Isabel Fernandes Arroteia, Frank Hertel, and Jorge Gonçalves. "Initialisation of Deep Brain Stimulation Parameters with Multi-objective Optimisation Using Imaging Data." In Informatik aktuell, 297–302. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36932-3_62.
Full textConference papers on the topic "Multi-parametric brain imaging data"
Wang, Yongmei Michelle, and Chunxiao Zhou. "Integrating and classifying parametric features from fMRI data for brain function characterization." In Medical Imaging, edited by Joseph M. Reinhardt and Josien P. W. Pluim. SPIE, 2006. http://dx.doi.org/10.1117/12.653646.
Full textKalicka, Renata, Anna Pietrenko-Dabrowska, Rafal Nowicki, and Seweryn Lipinski. "Brain perfusion imaging with the use of parametric modelling basing on DSC-MRI data." In 2008 1st International Conference on Information Technology (IT 2008). IEEE, 2008. http://dx.doi.org/10.1109/inftech.2008.4621660.
Full textKhmelinskii, A., L. Mengler, P. Kitslaar, M. Staring, M. Hoehn, and B. P. F. Lelieveldt. "A visualization platform for high-throughput, follow-up, co-registered multi-contrast MRI rat brain data." In SPIE Medical Imaging, edited by John B. Weaver and Robert C. Molthen. SPIE, 2013. http://dx.doi.org/10.1117/12.2006529.
Full textZeraatkar, Navid, Kesava S. Kalluri, Benjamin Auer, Neil C. Momsen, Micaehla May, R. Garrett Richards, Lars R. Furenlid, Phillip H. Kuo, and Michael A. King. "Demultiplexing of Projection Data in Adaptive Brain SPECT with Multi-Pinhole Collimation." In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2020. http://dx.doi.org/10.1109/nss/mic42677.2020.9507924.
Full textTolstokulakov, N., E. Pavlovskiy, B. Tuchinov, E. Amelina, M. Amelin, A. Letyagin, S. Golushko, and V. Groza. "Data Preprocessing Via Compositions Multi-Channel MRI Images to Improve Brain Tumor Segmentation." In 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops). IEEE, 2020. http://dx.doi.org/10.1109/isbiworkshops50223.2020.9153416.
Full textYu, Jun, Zhaoming Kong, Liang Zhan, Li Shen, and Lifang He. "Tensor-based Multi-Modality Feature Selection and Regression for Alzheimer’s Disease Diagnosis." In 8th International Conference on Artificial Intelligence and Applications (AI 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121812.
Full textTan, X. Gary, Maria M. D’Souza, Subhash Khushu, Raj K. Gupta, Virginia G. DeGiorgi, Ajay K. Singh, and Amit Bagchi. "Computational Modeling of Blunt Impact to Head and Correlation of Biomechanical Measures With Medical Images." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88026.
Full textJazzar, Nesrine, and Ali Douik. "A New Deep-Net Architecture for Ischemic Stroke Lesion Segmentation." In 4th International Conference on Machine Learning & Applications (CMLA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121108.
Full textReddy, Kishore K., Berkan Solmaz, Pingkun Yan, Nicholas G. Avgeropoulos, David J. Rippe, and Mubarak Shah. "Confidence guided enhancing brain tumor segmentation in multi-parametric MRI." In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235560.
Full textTiwari, Pallavi, Prateek Prasanna, Lisa Rogers, Leo Wolansky, Chaitra Badve, Andrew Sloan, Mark Cohen, and Anant Madabhushi. "Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI." In SPIE Medical Imaging, edited by Stephen Aylward and Lubomir M. Hadjiiski. SPIE, 2014. http://dx.doi.org/10.1117/12.2043969.
Full text