To see the other types of publications on this topic, follow the link: Multi-phase DC/DC converter.

Journal articles on the topic 'Multi-phase DC/DC converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multi-phase DC/DC converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hinov, Nikolay, and Tsvetana Grigorova. "Design Considerations of Multi-Phase Buck DC-DC Converter." Applied Sciences 13, no. 19 (2023): 11064. http://dx.doi.org/10.3390/app131911064.

Full text
Abstract:
The main objective of this article is to propose a rational methodology for designing multi-phase step-down DC-DC converters, which can find applications both in engineering practice and in power electronics education. This study discusses the main types of losses in the multi-phase synchronous buck converter circuit (transistors’ conduction losses, high-side MOSFET’s switching losses, reverse recovery losses in the body diode, dead time losses, output capacitance losses in the MOSFETs, gate charge losses in MOSFETs, conduction losses in the inductor, and losses in the input and output capacit
APA, Harvard, Vancouver, ISO, and other styles
2

Harimon, M. A., A. Ponniran, A. N. Kasiran, and H. H. Hamzah. "A Study on 3-phase Interleaved DC-DC Boost Converter Structure and Operation for Input Current Stress Reduction." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 4 (2017): 1948. http://dx.doi.org/10.11591/ijpeds.v8.i4.pp1948-1953.

Full text
Abstract:
This paper analyses a 3-phase interleaved DC-DC boost converter for the conversion of low input voltage with high input current to higher DC output voltage. The operation of the 3-phase interleaved DC-DC boost converter with multi-parallel of boost converters is controlled by interleaved of switching signals with 120 degrees phase-shifted. Therefore, with this circuit configuraion, high input current is evenly shared among the parallel units and consequently the current stress is reduced on the circuit and semiconductor devices and contributes reduction of overall losses. The simulation and ha
APA, Harvard, Vancouver, ISO, and other styles
3

Krishna, P. Mohan. "DESIGN OF MULTI-PORT DC-DC CONVERTER." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 06 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem35616.

Full text
Abstract:
Integrating Energy sources to have a sustainable energy supply is an important aspect to handle the significant loads. Multiport power converters are used to connect various types of energy sources and loads. The key advantages of multi-input converters lie in their capability to interface with multiple input sources such as solar panels, wind turbines, batteries, and grid power, thereby optimizing energy utilization and enhancing system reliability. In the paper, a new configuration of single switch Dual– Input Single-Output (DISO) DC-DC converter is proposed. This paper presents an overview
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Mukesh, Manoj Kumar Dewangan, and Maheedhar Dubey. "Implementation on Modeling and Analysis of Multi Stage with Multi Phase DC-DC Boost Converter." International Journal of Advance Research and Innovation 9, no. 1 (2021): 35–43. http://dx.doi.org/10.51976/ijari.912106.

Full text
Abstract:
In this paper, a new version of the new Hybrid Boost DC-DC ready to draw power from two different DC sources for standard DC-bus feeds is presented. An important feature of the proposed converter is that both sources provide simultaneous power to a lower load than the reduced current rate. This feature is very attractive for DC grid applications. With the analysis of the time zone, steadystate performance is established and the transformational power correction parameters are obtained. In this paper, a powerful converter is introduced, with its operating principles based on charging pumps and
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Junchi. "Comparison and Optimization of Non-isolated DC-DC Converters for Electric Vehicle Applications." Highlights in Science, Engineering and Technology 76 (December 31, 2023): 609–17. http://dx.doi.org/10.54097/zdpznq48.

Full text
Abstract:
This paper discusses the importance of electric vehicles in solving the problem of environmental pollution. In electric vehicles, DC/DC converter is a vital part to connect many electrical units with high voltage bus, so it plays a vital and indispensable role in electric vehicles. The paper analyzes the disadvantages of isolated DC/DC converter, and concludes that non-isolated DC/DC converter is a more suitable technical solution for electric vehicles. The research paper introduces a number of fundamental non-isolated DC/DC converter topologies before analyzing the technical optimization stra
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Zhengxin, Jiuyu Du, and Boyang Yu. "Design Method of Double-Boost DC/DC Converter with High Voltage Gain for Electric Vehicles." World Electric Vehicle Journal 11, no. 4 (2020): 64. http://dx.doi.org/10.3390/wevj11040064.

Full text
Abstract:
Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedb
APA, Harvard, Vancouver, ISO, and other styles
7

Verma, Vipin, and Aruna Patel. "(MIMO Buck Converter) Multi-Input Multi-Output DC-DC Buck Converter." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 691–96. http://dx.doi.org/10.22214/ijraset.2024.58908.

Full text
Abstract:
Abstract: Designs of the power electronics circuitry are nowadays reducing the size, space, and weight of converter and inverter circuits. This is possible because of the availability of new high-switching frequency devices. This paper presents a generalized model of buck converters that is multi-input multi-output(MIMO) fixed and variable. The converter used for stepping down the voltage is called a buck converter. The buck converter is designed, analyzed simulated & developed. The proposed model of this Buck converter consists of two parts: (a) Main converter circuits with the components
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Shijia, Fei Rong, Zhangtao Yin, Shoudao Huang, and Yuebin Zhou. "HVDC Transmission Technology of Wind Power System with Multi-Phase PMSG." Energies 11, no. 12 (2018): 3294. http://dx.doi.org/10.3390/en11123294.

Full text
Abstract:
The high voltage DC (HVDC) transmission technology of wind power system, with multi-phase permanent magnetic synchronous generator (PMSG) is proposed in this paper. Each set of three-phase winding of the multi-phase PMSG was connected to a diode rectifier. The output of the diode rectifier was connected by several parallel isolated DC–DC converters. Each DC–DC converter was connected to a sub-module (SM). All SMs and two inductors were connected in a series. The proposed wind power system has several advantages including, transformerless operation, low cost, low voltage stress, and high fault
APA, Harvard, Vancouver, ISO, and other styles
9

Ankur Kumar, Gupta, Mitra Uliya, and Verma Hemant Kumar. "A study of converter configurations for vehicular applications." Trends in Computer Science and Information Technology 9, no. 1 (2024): 010–22. http://dx.doi.org/10.17352/tcsit.000075.

Full text
Abstract:
Renewable energy sources like hydro, wind, geothermal and solar along with fuel cells are nowadays solutions to the global energy crisis, environmental issues, and fossil fuel exploitation. The nature of the output of these renewable sources is D.C. The role of DC-DC converters in the integration of energy sources with microgrids is vital. These converters find their major applications in power generation, energy systems, vehicular applications, portable electronic devices, aerospace, etc. These converters help to boost the voltage and improve the reliability, stability, efficiency, and perfor
APA, Harvard, Vancouver, ISO, and other styles
10

Tan, Zhong Yih, Nadia Mei Lin Tan, and Ida Suzana Hussain. "Theoretical Analysis of a Three-Phase Bidirectional Isolated DC-DC Converter Using Phase-Shifted Modulation." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 2 (2018): 495. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp495-503.

Full text
Abstract:
<span lang="EN-US">A three-phase bidirectional isolated dc-dc converter consists of two six-pulse two-level active converters that enable bidirectional power flow by introducing a lag phase-shift angle of one converter with respect to the other converter. This paper explains the operating modes of a three-phase bidirectional isolated dc-dc converter in detail, taking into account the transfer of energy between the dc voltage sources and high-frequency ac inductances in the three-phase bidirectional isolated dc-dc converter. The power flow of the dc-dc converter is also examined based on
APA, Harvard, Vancouver, ISO, and other styles
11

S, Chellam, Kuruseelan S, and Jasmine Gnanamalar A. "Wind Energy Conversion System using Cascading H-Bridge Multilevel Inverter in High Ripple Scenario." International Journal of Electrical and Electronics Research 12, no. 1 (2024): 178–86. http://dx.doi.org/10.37391/ijeer.120126.

Full text
Abstract:
This paper presents wind energy conversion system using CHB MLI and phase interleaved boost converter to overcome high voltage and current ripple. Developments in power electronics technology have a direct impact on advances in wind energy conversion systems. WECS output voltage may fluctuate depending on wind speed. For WECS to maintain a constant output voltage, a power converter is required. This paper explains how to configure a phase-interleaved boost converter and voltage controller to maintain a stable intermediate circuit voltage in the system. The proposed cascading H-bridge multileve
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Jingzhang, Shujun Chen, Hongyan Zhao, Yue Yu, and Mingyu Liu. "Designing a Multi-Output Power Supply for Multi-Electrode Arc Welding." Electronics 12, no. 7 (2023): 1702. http://dx.doi.org/10.3390/electronics12071702.

Full text
Abstract:
Multi-output power converters using different architectures can have significant efficiency advantages. This paper proposes a multi-output welding power supply that is based on the middle DC converter distributed architecture. This machine includes two converter groups, and each group comprises a three-phase rectifier unit, a full-bridge converter unit, a HF (high frequency) transformer, a rectifier unit, and a chopper converter unit. Among these units, the three-phase rectifier unit, full-bridge converter unit, HF transformer, and rectifier unit convert three-phase AC voltage into a low volta
APA, Harvard, Vancouver, ISO, and other styles
13

Bahadure, Ms Grishma. "Multi-Port DC-DC Power Converter for Renewable Energy Application." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 387–400. https://doi.org/10.22214/ijraset.2025.67259.

Full text
Abstract:
As traditional energy sources diminish, renewable energy sources such as wind and solar power are crucial for sustainable power generation. The intermittent nature of these sources means that their output must be conditioned to meet grid requirements, typically through power converters. Current systems use separate converters for wind and solar, leading to high component counts and inefficiencies. The suggested system integrates various energy sources using a four-port converter: two input ports of wind and solar power, a bidirectional storage port, one an isolated load port. By adopting zero
APA, Harvard, Vancouver, ISO, and other styles
14

Faraj, Karrar Saad, and Jasim F. Hussein. "Analysis and Comparison of DC-DC Boost Converter and Interleaved DC-DC Boost Converter." Engineering and Technology Journal 38, no. 5A (2020): 622–35. http://dx.doi.org/10.30684/etj.v38i5a.291.

Full text
Abstract:
The step-up converters are widespread use in many applications, including powered vehicles, photovoltaic systems, continuous power supplies, and fuel cell systems. The reliability, quality, maintainability, and reduction in size are the important requirements in the energy conversion process. Interleaving method is one of advisable solution for heavy-performance applications, its harmonious in circuit design by paralleling two or more identical converters. This paper investigates the comparison performance of a two-phase interleaved boost converter with the traditional boost converter. The inv
APA, Harvard, Vancouver, ISO, and other styles
15

Ghazali, Mohd Shukri bin Mohd, Rahimi Bin Baharom, Khairul Safuan Bin Muhammad, and Dylan Dah-Chuan Lu. "Computer simulation model of multi-input multi-output converter using single-phase matrix converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 13, no. 2 (2022): 1047. http://dx.doi.org/10.11591/ijpeds.v13.i2.pp1047-1055.

Full text
Abstract:
This paper presents a multi-input, multi-output power converter system using a single-phase matrix converter (SPMC) circuit topology. In particular, this technology is of vital importance in floating production such as offshore oil and gas platforms where space is crucial, therefore requiring a reduction in equipment size and weight. The proposed circuit topology only employed a single circuit to perform energy conversion of direct current (DC) to alternating current (AC), DC to DC, AC to DC, and AC to AC operations, thus can reduce the power losses resulting in high power density. As a result
APA, Harvard, Vancouver, ISO, and other styles
16

ARAVINDH, R., and V. G. DIVAKAR. "CLOSED LOOP CONTROL FOR MULTI LEVEL DC – DC CONVERTER USING NEURAL NETWORKS." JournalNX - a Multidisciplinary Peer Reviewed Journal Volume 3, Issue 11 (2017): 10–14. https://doi.org/10.5281/zenodo.1420148.

Full text
Abstract:
Multilevel DC – DC converter system is the novel development system which may be used as a DC link where several levels of controlled voltages are needed with unidirectional current flow and self balancing. The concept Multilevel is able to be implemented for both Buck converter and Boost converter. For multiple outputs, multilevel converter topology can be extended. This proposed paper shows the method of neural network controller implementation for the Multilevel DC – DC converters. The purpose of this is to decrease the output voltage ripple content and
APA, Harvard, Vancouver, ISO, and other styles
17

Saadatizadeh, Zahra, Pedram Chavoshipour Heris, Mehran Sabahi, and Xiaodong Liang. "Multi‐input multi‐phase transformerless large voltage conversion ratio DC/DC converter." International Journal of Circuit Theory and Applications 49, no. 12 (2021): 4294–315. http://dx.doi.org/10.1002/cta.3117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ibrahim, Alhamrouni, Salem Mohamed, Zahraoui Younes, Ismail Bazilah, Jusoh Awang, and Sutikno Tole. "Multi-input interleaved DC-DC converter for hybrid renewable energy applications." Bulletin of Electrical Engineering and Informatics 11, no. 3 (2022): 1765~1778. https://doi.org/10.11591/eei.v11i3.3779.

Full text
Abstract:
The increasing demand for hybrid energy systems based on renewable energy sources has enabled the new dimension for multi-input converter (MIC). Various topologies have been introduced over the last decade. However, most of these topologies have several drawbacks in terms of design complexity or efficiency. Therefore, this research aims to introduce a multi-input DC-DC converter for hybrid renewable energy applications. The proposed multi-input converter is able to hybridize different sources such as solar PV array and PEMFC. Analysis and simulation have been carried out for the double input t
APA, Harvard, Vancouver, ISO, and other styles
19

Mohd, Shukri bin Mohd Ghazali, Bin Baharom Rahimi, Safuan Bin Muhammad Khairul, and Dah-Chuan Lu Dylan. "Computer simulation model of multi-input multi-output converter using single-phase matrix converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 13, no. 2 (2022): 1047–55. https://doi.org/10.11591/ijpeds.v13.i2.pp1047-1055.

Full text
Abstract:
This paper presents a multi-input, multi-output power converter system using a single-phase matrix converter (SPMC) circuit topology. In particular, this technology is of vital importance in floating production such as offshore oil and gas platforms where space is crucial, therefore requiring a reduction in equipment size and weight. The proposed circuit topology only employed a single circuit to perform energy conversion of direct current (DC) to alternating current (AC), DC to DC, AC to DC, and AC to AC operations, thus can reduce the power losses resulting
APA, Harvard, Vancouver, ISO, and other styles
20

Subramaniyan, Geethanjali, Vijayakumar Krishnasamy, and Jagabar Sathik Mohammed. "Modeling and Design of Split-Pi Converter." Energies 15, no. 15 (2022): 5690. http://dx.doi.org/10.3390/en15155690.

Full text
Abstract:
High-power bidirectional dc–dc converters are being widely employed in renewable energy interfacing, energy storage, electric vehicle charging, military, aerospace, and marine applications. Among various bidirectional topologies documented in the literature for dc–dc power conversion, the split-pi converter invites special attention with regard to applications involving multi-phase systems requiring high-power density. This paper endeavors to present the small-signal modeling of the split-pi converter in its various operating modes. Subsequently, the dynamic characteristics of the converter ar
APA, Harvard, Vancouver, ISO, and other styles
21

Kobori, Yasunori, and Haruo Kobayashi. "Single-Inductor Multi-Output DC-DC Switching Converters Using Exclusive Control Method." Digital Technologies Research and Applications 4, no. 1 (2025): 1–43. https://doi.org/10.54963/dtra.v4i1.880.

Full text
Abstract:
This review paper presents Single-Inductor Dual-Output (SIDO) and Single-Inductor Multi-Output (SIMO) DC-DC converters with our proposed exclusive control method. First, we provide an overview of three fundamental types of switching converters: the buck converter, the boost converter, and the buck-boost converter, all using Pulse Width Modulation (PWM) signals for their control. Next, we introduce SIDO converters with the exclusive control method, including the PWM control, the ripple control, the hysteretic control, and the soft-switching (with zero-voltage switching). In addition, we introdu
APA, Harvard, Vancouver, ISO, and other styles
22

Kumar, Chinta Anil, Kandasamy Jothinathan, and Lingineni Shanmukha Rao. "A novel SIMIDCBC topology driven PMSM for PEV application." International Journal of Applied Power Engineering (IJAPE) 13, no. 1 (2024): 66. http://dx.doi.org/10.11591/ijape.v13.i1.pp66-80.

Full text
Abstract:
Nowadays, the usage of renewable energy based electric vehicles is increased for reducing CO2 emissions, usage of fossil fuels, energy saving, and transportation cost. As a result, it becomes the most significantly run with combined energy sources and it is good choice which minimizes the energy consumption from charging stations. The available renewable energy is integrated to power-train through power-electronic interface; such interface consists of three-phase inverter with DC-DC boost converter. The combined energy sources like solar-PV/battery are integrated to power-train by employing mu
APA, Harvard, Vancouver, ISO, and other styles
23

Kumar, Chinta Anil, Kandasamy Jothinathan, and Lingineni Shanmukha Rao. "A novel SIMIDCBC topology driven PMSM for PEV application." International Journal of Applied Power Engineering (IJAPE) 13, no. 1 (2023): 66–80. https://doi.org/10.11591/ijape.v13.i1.pp66-80.

Full text
Abstract:
Nowadays, the usage of renewable energy based electric vehicles is increased for reducing CO2 emissions, usage of fossil fuels, energy saving, and transportation cost. As a result, it becomes the most significantly run with combined energy sources and it is good choice which minimizes the energy consumption from charging stations. The available renewable energy is integrated to power-train through power-electronic interface; such interface consists of three-phase inverter with DC-DC boost converter. The combined energy sources like solar-PV/battery are integrated to power-train by employing mu
APA, Harvard, Vancouver, ISO, and other styles
24

G., Devi Sri. "Dual Directional DC-DC Converter for Grid Integrated PV, Wind along with Battery System Based on Multi- Source Transformer." International Journal for Research in Applied Science and Engineering Technology 13, no. 5 (2025): 7543–51. https://doi.org/10.22214/ijraset.2025.71879.

Full text
Abstract:
The green power generation such as solar, wind can also meet the load profile. The goal is to tap the output from different sources using the combination of the PV solar, battery and wind using the power electronics converters system. Excess electricity is injected into grid which charges/discharge the battery when needed. PV solar generation and battery's cycling are employed by dual-directional buck-boost converter. Wind power is used by a transformer connected dual half bridge converter. A monophase phase inverter guarantees the converted output to the grid. This system disturbs with fewer
APA, Harvard, Vancouver, ISO, and other styles
25

Choi, Jung-Sik, Byung-Chul Park, Dong-Hwa Chung, and Seung-Yeol Oh. "Study on the High Efficiency Bi-directional DC/DC Converter Topology Using Multi-Phase Interleaved Method." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 29, no. 2 (2015): 82–90. http://dx.doi.org/10.5207/jieie.2015.29.2.082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Koneh, Norbert Njuanyi, Jae-Sub Ko, and Dae-Kyong Kim. "Simulations of the Comparative Study of the Single-Phase Shift and the Dual-Phase Shift-Controlled Triple Active Bridge Converter." Electronics 11, no. 20 (2022): 3274. http://dx.doi.org/10.3390/electronics11203274.

Full text
Abstract:
This paper presents a comparative study between the traditional phase shift (also referred to as the Single-Phase Shift (SPS)) and the Dual-Phase Shift (DPS) controlled Triple Active Bridge (TAB) converter. Being a multi-port DC-DC converter with flexible power flow control and characterized by high power density, the TAB converter is applicable in almost any situation where a DC-DC converter is needed. With the availability of multiple control schemes, this work highlights the advantages and disadvantages of the most employed control scheme used on the TAB converter, in comparison with the DP
APA, Harvard, Vancouver, ISO, and other styles
27

Mehida, Hicham, Abdennacer Aboubou, and Mohamed Yacine Ayad. "Reliability improvement of multi-phase interleaved DC-DC converters for fuel cell electric vehicle applications." Bulletin of Electrical Engineering and Informatics 12, no. 5 (2023): 2553–60. http://dx.doi.org/10.11591/eei.v12i5.4674.

Full text
Abstract:
This paper suggests a fast and low-cost method that can be applied in several DC/DC converter topologies for detecting open circuit faults (OCFs) and short circuit faults (SCFs). The suggested method may identify the faults of several power switches even if they occur simultaneously in multi-phase interleaved boost converters (MPh-IBC) by using just the sensors needed to control the converter. This fault detection method (FDM) is based mainly on comparing the measured inductor current and two fault detection thresholds, one for OCFs detection and the other for SCFs detection. This method combi
APA, Harvard, Vancouver, ISO, and other styles
28

Mohan, Dr T. Murali. "Closed-Loop Control of a New High Step-Up Multi-Input Multi-Output DC-DC Converter." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (2021): 1281–98. http://dx.doi.org/10.22214/ijraset.2021.38988.

Full text
Abstract:
Abstract: A new multi-input multi-output dc-dc converter with high step-up capability for wide power ranges is proposed in this paper. The converter's number of inputs and outputs is arbitrary and independent of each other. The proposed topology combines the benefits of DC-DC boost and switched-capacitor converters. The number of input, output, and voltage multiplier stages is arbitrary and depends on the design conditions. First, the various operating modes of the proposed converter are discussed. The closed-loop control system also must be designed using state space representation and small-
APA, Harvard, Vancouver, ISO, and other styles
29

Alhamrouni, Ibrahim, Mohamed Salem, Younes Zahraoui, Basilah Ismail, Awang Jusoh, and Tole Sutikno. "Multi-input interleaved DC-DC converter for hybrid renewable energy applications." Bulletin of Electrical Engineering and Informatics 11, no. 3 (2022): 1765–78. http://dx.doi.org/10.11591/eei.v11i3.3779.

Full text
Abstract:
The increasing demand for hybrid energy systems based on renewable energy sources has enabled the new dimension for multi-input converter (MIC). Various topologies have been introduced over the last decade. However, most of these topologies have several drawbacks in terms of design complexity or efficiency. Therefore, this research aims to introduce a multi-input DC-DC converter for hybrid renewable energy applications. The proposed multi-input converter is able to hybridize different sources such as solar PV array and PEMFC. Analysis and simulation have been carried out for the double input t
APA, Harvard, Vancouver, ISO, and other styles
30

Bhargava, Anil Kumar, UTTAM KUMAR GUPTA, Mamta Rani, and Ajit Ajit. "Comprehensive Review of Power Electronic DC-DC Converters in Electric Vehicle Applications." Radius: Journal of Science and Technology 1, no. 1 (2024): 241005. https://doi.org/10.5281/zenodo.15008251.

Full text
Abstract:
The rapid rise of electric vehicles (EVs) presents a sustainable alternative to traditional internal combustion engine (ICE) vehicles, significantly reducing greenhouse gas emissions and improving overall vehicle efficiency. This paper investigates the critical role of power electronic converters, especially DC-DC converters, within EV powertrains. Emphasizing the necessity of achieving appropriate voltage levels for battery and motor operation, it explores conventional and advanced DC-DC converter topologies, including the conventional boost converter (BC) and the interleaved four-phase boost
APA, Harvard, Vancouver, ISO, and other styles
31

Demirdelen, Tuğçe, R. İlker Kayaalp, and Mehmet Tümay. "Modelling and Analysis of Bidirectional DC-DC Converter." International Journal for Innovation Education and Research 3, no. 12 (2015): 16–30. http://dx.doi.org/10.31686/ijier.vol3.iss12.483.

Full text
Abstract:
Bidirectional dc-dc converters are used lots of industrial areas such as electric vehicles, uninterruptable power supplies, fuel cells, solar panel cells as energy sources are searched in order to improve the quality of power at the transmission, distribution lines and other areas. The main contribution of this paper, applying the most common used control method on single phase isolated bidirectional full bridge dc-dc converter and comparing this control method (Extended Phase Shift – EPS) on efficiency way by with/without using snubber capacitors. In this paper, Isolated Bidirectional DC-DC C
APA, Harvard, Vancouver, ISO, and other styles
32

Guennouni, Nasr, Nadia Machkour, and Ahmed Chebak. "Single- and Three-Phase Dual-Active-Bridge DC–DC Converter Comparison for Battery Electric Vehicle Powertrain Application." Energies 17, no. 21 (2024): 5509. http://dx.doi.org/10.3390/en17215509.

Full text
Abstract:
Dual-active-bridge (DAB) DC–DC converters are of great interest for DC–DC conversion in battery electric vehicle (BEV) powertrain applications. There are two versions of DAB DC–DC converters: single-phase (1p) and three-phase (3p) architectures. Many studies have compared these architectures, selecting the 3p topology as the most efficient. However, there is a gap in the literature when comparing both architectures when single-phase-shift (SPS) modulation is not used to drive the converter. The aim of this study was to compare 1p and 3p DAB DC–DC converters driven by optimal modulation techniq
APA, Harvard, Vancouver, ISO, and other styles
33

Rahimi, Tohid, Hossein Jahan, Frede Blaabjerg, Amir Bahman, and Seyed Hosseini. "Fuzzy-Logic-Based Mean Time to Failure (MTTF) Analysis of Interleaved Dc-Dc Converters Equipped with Redundant-Switch Configuration." Applied Sciences 9, no. 1 (2018): 88. http://dx.doi.org/10.3390/app9010088.

Full text
Abstract:
Interleaved dc-dc converters in sensitive applications necessitate an enhanced reliability. An interleaved converter equipped with redundant components can fulfill the reliability requirements. Mean Time to Failure (MTTF), as a reliability index, can be used to evaluate the expected life span of the mentioned converters. The Markov model is a helpful tool to calculate the MTTF in such systems. Different scientific reports denote different failure rates with different weight for power elements. Also, in reliability reports, failure rates of active and passive components are uncertain values. In
APA, Harvard, Vancouver, ISO, and other styles
34

Ren, Chunguang, Yapeng He, Yue Qin, et al. "A Novel Modular Sigma DC/DC Converter with a Wide Input Voltage Range." Electronics 13, no. 5 (2024): 995. http://dx.doi.org/10.3390/electronics13050995.

Full text
Abstract:
A modular Sigma DC/DC converter with wide input voltage range is proposed in this paper. The proposed converter is combined with a traditional LLC converter and two multi-resonant converters via Sigma architecture. Among them, the traditional LLC converter operates as a DC transformer (DCX) at resonant frequency to achieve maximum efficiency. Meanwhile, one of the multi-resonant converters, the DC to DC (D2D) part of the Sigma structure, is responsible for voltage regulation over a wide input voltage range. In addition, the other multi-resonant converter has two operation modes, including DCX
APA, Harvard, Vancouver, ISO, and other styles
35

Muhammad, Nuruddin Ar Rabbani, Dahono Andriazis, Rizqiawan Arwindra, and Argo Dahono Pekik. "A new family of bidirectional DC-DC power converters with very low input and output ripples." TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 20, no. 4 (2022): 933–44. https://doi.org/10.12928/telkomnika.v20i4.24215.

Full text
Abstract:
Bidirectional DC-DC converters with very low ripple contents in the input and output sides are desirable in many applications. This paper proposes a new family of bidirectional DC-DC converters with very low input and output ripples that is derived from the conventional Cuk DC-DC converter. At first, a new family of single-phase DC-DC converter is derived. Then, extension of this family into the multiphase ones is presented. Output voltage expressions of the proposed DC-DC converters are presented. It is found that the derived DC-DC converters have lower conduction losses than the conventional
APA, Harvard, Vancouver, ISO, and other styles
36

Golovko, Sergey Vladimirovich, Artem Vladislavovich D'yachenko, and Nickolay Gennadievich Romanenko. "Comparative analysis of thyristor schemes of marine DC motor control." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2020, no. 2 (2020): 111–19. http://dx.doi.org/10.24143/2073-1574-2020-2-111-119.

Full text
Abstract:
The article considers the problem of the DC motors control that are often used in many electric drive systems. Due to the progress of industrial electronics and technology it has become possible to develop more efficient motor control circuits. The conventional speed control methods commit power losses in the system, which can be minimized by using the power electronics strategy. There is considered the thyristor control of DC motors of the ship electric drive. The DC motor control systems are described and simulation models in the MATLAB Simulink program are presented. The thyristor methods f
APA, Harvard, Vancouver, ISO, and other styles
37

Adil, Hasan Mahmood, F. Mohammed Mustafa, Omar Al Mohammed, and H. Ahmad Ali. "Single phase inverter fed through a regulated SEPIC converter." Bulletin of Electrical Engineering and Informatics 10, no. 6 (2021): 2921~2928. https://doi.org/10.5281/zenodo.5908745.

Full text
Abstract:
In power electronics, it is necessary to select the best converter circuit topology that has good performance among different converters. The singleended primary inductor converter (SEPIC) has good performance and is advantageous among different direct DC/DC converters. In this paper, a design of a SEPIC converter is made by selecting the values of its components according to the required output voltage and power. The design is made by an assumption that both of its inductors have the same value. The converter is tested by using MATLAB/Simulink successfully. Later, its output voltage is regula
APA, Harvard, Vancouver, ISO, and other styles
38

Sampath, Suresh, Zahira Rahiman, Sharmeela Chenniappan, Elango Sundaram, Umashankar Subramaniam, and Sanjeevikumar Padmanaban. "Efficient Multi-Phase Converter for E-Mobility." World Electric Vehicle Journal 13, no. 4 (2022): 67. http://dx.doi.org/10.3390/wevj13040067.

Full text
Abstract:
The recent growth of battery-powered applications has increased the need for high-efficiency step-up dc-dc converters. The step-up conversion is commonly used in several applications, such as electric vehicle (EV); plug-in hybrid electric vehicles (PHEV); photovoltaic (PV) systems; uninterruptible power supplies (UPS); and fuel cell systems. The input current is shared among inductors by paralleling the converters; resulting in high reliability and efficiency. In this paper; a detailed analysis for reducing power loss and improving efficiency is discussed. In continuous conduction mode; the co
APA, Harvard, Vancouver, ISO, and other styles
39

Gabbar, Hossam A., and Abdalrahman Elshora. "Modular Multi-Input DC/DC Converter for EV Fast Charging." Technologies 10, no. 6 (2022): 113. http://dx.doi.org/10.3390/technologies10060113.

Full text
Abstract:
In this paper, a modular multi-input, single output DC/DC converter is proposed to enhance the energy management of a fast-charging station for electric vehicles (EVs). The proposed bidirectional converter can work in different modes of operation with fewer components and a modular design to extend the input power sources and increase the charging power rate. The converter has several merits compared to the conventional converters, such as centralizing the control, reducing power devices, and reducing power conversion stages. By using MATLAB/Simulink, the converter was tested in many operation
APA, Harvard, Vancouver, ISO, and other styles
40

İskender, İres, Yıldürüm Üçtug˘, and H. Bülent Ertan. "Steady‐state modeling of a phase‐shift PWM parallel resonant converter." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 25, no. 4 (2006): 883–99. http://dx.doi.org/10.1108/03321640610684051.

Full text
Abstract:
PurposeTo derive an analytical model for a dc‐ac‐dc parallel resonant converter operating in lagging power factor mode based on the steady‐state operation conditions and considering the effects of a high‐frequency transformer.Design/methodology/approachA range of published works relevant to dc‐ac‐dc converters and their control methods based on pulse‐width‐modulation technique are evaluated and their limitations in output measurement of higher output voltage converters are indicated. The circuit diagram of the converter is described and the general mathematical model of the system is obtained
APA, Harvard, Vancouver, ISO, and other styles
41

John, Joy, Gibi Meenu, Kuruvilla Jisha, and Susan Eldo Honey. "Modified Interleaved High Gain DC/DC Converter." International Journal of Innovative Science and Research Technology 7, no. 10 (2022): 1999–2005. https://doi.org/10.5281/zenodo.7353108.

Full text
Abstract:
In recent years, DC distribution systems are gainingmore attention because of their high efficiency, reliability com- pared to AC distribution systems. Integration of lower voltage range renewable energy sources into 400 V dc bus is one of the major challenges to be faced by the power electronic converters. Typical voltage ranges of a solar panel is around20- 30V . Conversion of these voltages to higher voltage rangeby normal boost converters with high duty ratios results in high voltage stresses and lesser efficiency. Since, the output DC voltage from the photovoltaic panel is very low, so a
APA, Harvard, Vancouver, ISO, and other styles
42

Pote, Dr Ravindra S. "Three Phase Grid Connected Inverter for Solar Photovoltaic Systems." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 1619–24. http://dx.doi.org/10.22214/ijraset.2022.46467.

Full text
Abstract:
Abstract: The main aim is to convert the Solar PV DC voltage into AC voltage by using 3 phase inverter and getting sinusoidal AC output voltage. To convert solar PV which is in DC needs to be converted into AC by using the devices like 3 phase inverter and boost converter. The solar PV is a variable DC that is to be converted into pure DC for which will convert variable DC to pure DC. The MPPT is designed and is applied to boost converter which increases the solar PV’s efficiency. Then the output of boost converter which is DC voltage is given to 3 phase inverter. The 3 phase inverter which is
APA, Harvard, Vancouver, ISO, and other styles
43

Kroics, K., U. Sirmelis, and L. Grigans. "Digitally Controlled 4-Phase Bi-Directional Interleaved Dc-Dc Converter with Coupled Inductors / Digitāli Vadāms 4 Fāžu Divvirziena Līdzstrāvas Pārveidotājs Ar Saistītajām Droselēm." Latvian Journal of Physics and Technical Sciences 52, no. 4 (2015): 18–31. http://dx.doi.org/10.1515/lpts-2015-0020.

Full text
Abstract:
Abstract The main advantages of multiphase interleaved DC-DC converters over single-phase converters are reduced current stress and reduced output current ripple. Nevertheless, inductor current ripple cannot be reduced only by an interleaving method. The integrated magnetic structure can be used to solve this problem. In this paper, the application of 2-phase coupled inductor designed in a convenient way by using commercially manufactured coil formers and ferrite cores is analysed to develop a 4-phase interleaved DC-DC converter. The steady state phase and output current ripple in a boost mode
APA, Harvard, Vancouver, ISO, and other styles
44

Ram, Prakash Ponraj, Ganeshprabhu Devadharshini, Balaji Haripriya, Ganesan Hemadharshini, and Dhanabalan Keerthana. "Modified Multi Input Multilevel DC-DC Boost Converter for Hybrid Energy Systems." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 4 (2020): 1067–72. https://doi.org/10.35940/ijeat.D7854.049420.

Full text
Abstract:
DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage i
APA, Harvard, Vancouver, ISO, and other styles
45

PRATYUSHA, ATLURI DEEPTHI, and L. RAVI SRINIVAS. "CUK-ZETA Multi-Input DC-DC Converter." International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3, no. 11 (2014): 13176–85. http://dx.doi.org/10.15662/ijareeie.2014.0311034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Al-Ammari, Rashid, Atif Iqbal, Amith Khandakar, Syed Rahman, and Sanjeevikumar Padmanaban. "Systematic Implementation of Multi-Phase Power Supply (Three to Six) Conversion System." Electronics 8, no. 1 (2019): 109. http://dx.doi.org/10.3390/electronics8010109.

Full text
Abstract:
Multiphase (more than three) power system has gained popularity due to their inherent advantages when compared to three-phase counterpart. Multiphase power supply is extensively used in AC/DC multi-pulse converters, especially supply with multiple of three-phases. AC/DC converter with multi-pulse input is a popular solution to reduce the ripple in the DC output. Single-phase and three-phase transformers and phase transformation from single to multiphase are employed in variable speed drives application to feed the multi-cell H-Bridge converters and multi-pulse AC-DC converters. Six-phase syste
APA, Harvard, Vancouver, ISO, and other styles
47

Stachon, K., G. Dissertori, T. Gadek, M. Hansen, S. Lusin, and W. Lustermann. "Modern high-availability multi-stage power distribution system for the CMS phase-2 upgrade." Journal of Instrumentation 18, no. 02 (2023): C02053. http://dx.doi.org/10.1088/1748-0221/18/02/c02053.

Full text
Abstract:
Abstract The operation of CMS at the HL-LHC requires an upgrade of the readout electronics. These new modern micro-electronics require power at precise voltages between 1.2 V and 2.5 V. We will deliver this power using a 3-stage system, comprising AC-DC conversion to 380 V DC followed by radiation-tolerant 12 V DC-DC power converters feeding radiation-hard point-of-load DC-DC converter. We have studied an industrial 380 V AC-DC conversion system, featuring hot-swappable 3 kW power modules, stackable up to ∼1 MW system. Such systems are candidates for the first conversion step, feeding custom p
APA, Harvard, Vancouver, ISO, and other styles
48

Babu, Samuel Rajesh. "Push-Pull Converter Fed Three-Phase Inverter for Residential and Motor Load." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 2 (2015): 260. http://dx.doi.org/10.11591/ijpeds.v6.i2.pp260-267.

Full text
Abstract:
<p>The proposed paper is an new approach for power conditioning of a PV (photo-voltaic) cell array. The main objective is to investigate an approach to provide and improve the delivered electric energy by means of power conditioning structures with the use of alternative renewable resources (ARRs) for remote rural residential or industrial non-linear loads. This approach employs a series-combined connected boost and buck boost DC-DC converter for power conditioning of the dc voltage provided by a photo-voltaic array. The input voltage to the combined converters is 100 V provided from two
APA, Harvard, Vancouver, ISO, and other styles
49

Mohsin, Raza Mahesar, Ahmed Mahar Mukhtiar, Sattar Larik Abdul, and Hussain Solangi Muzamil. "Comparative Analysis of Three-Phase Single Active Bridge DC-DC Converter with Different Mode of Conduction with Transformer Vector Groups." Indian Journal of Science and Technology 13, no. 6 (2020): 630–45. https://doi.org/10.17485/ijst/2020/v13i06/149543.

Full text
Abstract:
Abstract <strong>Background/objectives:</strong>&nbsp;This research study compares the performance of a three-phase single active bridge DC-DC converter with several operating modes along with vector groups in order to present the importance and applications of transformer vector groups in the electrical network system. <strong>Methods/statistical analysis:</strong>&nbsp;In order to analyze and compare the operating characteristics of three-phase single active bridge converter with vector groups of transformer. Initially, we made a detailed study of vector groups of transformers through litera
APA, Harvard, Vancouver, ISO, and other styles
50

原, 增泉. "Multi-Phase DC-DC Converter with Bi-Directional Power Flow Ability for FCEV." Journal of Electrical Engineering 07, no. 01 (2019): 63–75. http://dx.doi.org/10.12677/jee.2019.71007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!