To see the other types of publications on this topic, follow the link: Multi Quantum well lasers.

Journal articles on the topic 'Multi Quantum well lasers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multi Quantum well lasers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bouley, J. C., and G. Destefanis. "Multi-quantum well lasers for telecommunications." IEEE Communications Magazine 32, no. 7 (July 1994): 54–60. http://dx.doi.org/10.1109/35.295945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stange, Daniela, Nils von den Driesch, Thomas Zabel, Francesco Armand-Pilon, Denis Rainko, Bahareh Marzban, Peter Zaumseil, et al. "GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers." ACS Photonics 5, no. 11 (October 19, 2018): 4628–36. http://dx.doi.org/10.1021/acsphotonics.8b01116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hofstetter, Daniel, Robert L. Thornton, Linda T. Romano, David P. Bour, Michael Kneissl, Rose M. Donaldson, and Clarence Dunnrowicz. "Characterization of InGaN/GaN-Based Multi-Quantum Well Distributed Feedback Lasers." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 69–74. http://dx.doi.org/10.1557/s1092578300002258.

Full text
Abstract:
We present a device fabrication technology and measurement results of both optically pumped and electrically injected InGaN/GaN-based distributed feedback (DFB) lasers operated at room temperature. For the optically pumped DFB laser, we demonstrate a complex coupling scheme for the first time, whereas the electrically injected device is based on normal index coupling. Threshold currents as low as 1.1 A were observed in 500 μm long and 10 μm wide devices. The 3rd order grating providing feedback was defined holographically and dry-etched into the upper waveguiding layer by chemically-assisted ion beam etching. Even when operating these lasers considerably above threshold, a spectrally narrow emission (3.5 Å) at wavelengths around 400 nm was seen.
APA, Harvard, Vancouver, ISO, and other styles
4

Ohtoshi, Tsukuru, Tsuyoshi Uda, and Naoki Chinone. "Calculated Threshold Current Densityof Multi-Quantum-Well Wire Lasers." Japanese Journal of Applied Physics 26, Part 1, No. 2 (February 20, 1987): 236–38. http://dx.doi.org/10.1143/jjap.26.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qian, Fang, Yat Li, Silvija Gradečak, Hong-Gyu Park, Yajie Dong, Yong Ding, Zhong Lin Wang, and Charles M. Lieber. "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers." Nature Materials 7, no. 9 (August 17, 2008): 701–6. http://dx.doi.org/10.1038/nmat2253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DeLeonardis, F., and V. M. N. Passaro. "Accurate physical modelling of multi quantum well ring lasers." Laser Physics Letters 2, no. 2 (February 1, 2005): 59–70. http://dx.doi.org/10.1002/lapl.200410146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smowton, P. M., G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne. "Non-uniform carrier distribution in multi-quantum-well lasers." Applied Physics Letters 83, no. 3 (July 21, 2003): 419–21. http://dx.doi.org/10.1063/1.1593818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ogasawara, Nagaatsu, Ryoichi Ito, and Ryuji Morita. "Linewidth Enhancement Factor in GaAs/AlGaAs Multi-Quantum-Well Lasers." Japanese Journal of Applied Physics 24, Part 2, No. 7 (July 20, 1985): L519—L521. http://dx.doi.org/10.1143/jjap.24.l519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohtoshi, T., K. Uomi, N. Chinone, T. Kajimura, and Y. Murayama. "Calculated gain and spontaneous spectra of multi‐quantum‐well lasers." Journal of Applied Physics 57, no. 3 (February 1985): 992–94. http://dx.doi.org/10.1063/1.334708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Uomi, Kazuhisa. "Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory." Japanese Journal of Applied Physics 29, Part 1, No. 1 (January 20, 1990): 81–87. http://dx.doi.org/10.1143/jjap.29.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Uomi, Kazuhisa, Tomoyoshi Mishima, and Naoki Chinone. "Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. II. Experiment." Japanese Journal of Applied Physics 29, Part 1, No. 1 (January 20, 1990): 88–94. http://dx.doi.org/10.1143/jjap.29.88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Perales, A., L. Goldstein, B. Fernier, C. Starck, J. L. Lievin, F. Poingt, and J. Benoit. "Multi-quantum-well lasers emitting at 1.55μm grown by GSMBE." Electronics Letters 25, no. 20 (1989): 1350. http://dx.doi.org/10.1049/el:19890902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kojima, K., and K. Kyuma. "Multi-quantum well distributed feedback and distributed Bragg reflector lasers." Semiconductor Science and Technology 5, no. 6 (June 1, 1990): 481–93. http://dx.doi.org/10.1088/0268-1242/5/6/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Uchiyama, Seiji, and Takao Ninomiya. "1.3-μm GaInAsP/InP Multi-Quantum-Well Surface-Emitting Lasers." Optical Review 3, no. 2 (March 1996): 59–61. http://dx.doi.org/10.1007/s10043-996-0059-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Akhtar, A. I., C. ‐Z Guo, and J. M. Xu. "Effect of well coupling on the optical gain of multi‐quantum‐well lasers." Journal of Applied Physics 73, no. 9 (May 1993): 4579–85. http://dx.doi.org/10.1063/1.352774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ohta, T., S. Semura, T. Kuroda, and H. Nakashima. "IVA-6 AlGaAs multi-quantum-well lasers with buried multi-quantum well optical guide fabricated by Zn-diffusion-induced disordering." IEEE Transactions on Electron Devices 32, no. 11 (November 1985): 2540–41. http://dx.doi.org/10.1109/t-ed.1985.22343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kamiyama, Satoshi, Takeshi Uenoyama, Masaya Mannoh, and Kiyoshi Ohnaka. "Strain Effect on 630 nm GaInP/AlGaInP Multi-Quantum Well Lasers." Japanese Journal of Applied Physics 33, Part 1, No. 5A (May 15, 1994): 2571–78. http://dx.doi.org/10.1143/jjap.33.2571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Park, S. H., J. I. Shim, K. Kudo, M. Asada, and S. Arai. "Band gap shrinkage in GaInAs/GaInAsP/InP multi‐quantum well lasers." Journal of Applied Physics 72, no. 1 (July 1992): 279–81. http://dx.doi.org/10.1063/1.352129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xu Yulan, 徐玉兰, 林中晞 Lin Zhongxi, 陈景源 Chen Jingyuan, 林. 琦. Lin Qi, 王凌华 Wang Linghua, and 苏. 辉. Su Hui. "Experimental and theoretical study of the bistable InGaAsP multi-quantum-well lasers." Infrared and Laser Engineering 47, no. 11 (2018): 1105004. http://dx.doi.org/10.3788/irla201847.1105004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sheu, Jinn-Kong, Yan-Kuin Su, Shoou-Jinn Chang, Gou-Chung Chi, Kai-Bin Lin, Chia-Cheng Liu, and Chien-Chia Chiu. "Electrical derivative characteristics of ion-implanted AlGaInP/GaInP multi-quantum well lasers." Solid-State Electronics 42, no. 10 (October 1998): 1867–69. http://dx.doi.org/10.1016/s0038-1101(98)00148-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shi, Z., M. Tacke, A. Lambrecht, and H. Böttner. "Midinfrared lead salt multi‐quantum‐well diode lasers with 282 K operation." Applied Physics Letters 66, no. 19 (May 8, 1995): 2537–39. http://dx.doi.org/10.1063/1.113159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jung, Daehwan, Lan Yu, Sukrith Dev, Daniel Wasserman, and Minjoo Larry Lee. "Room-temperature mid-infrared quantum well lasers on multi-functional metamorphic buffers." Applied Physics Letters 109, no. 21 (November 21, 2016): 211101. http://dx.doi.org/10.1063/1.4968560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kubota, Munechika, Kayo Hamano, Keizo Takemasa, Masao Kobayashi, Hiroshi Wada, and Tsutomu Munakata. "Thermal Properties of 1.3 µm AlGaInAs Multi Quantum Well Ridge Waveguide Lasers." Japanese Journal of Applied Physics 39, Part 1, No. 4B (April 30, 2000): 2297–300. http://dx.doi.org/10.1143/jjap.39.2297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xiong, Zhang, Li Ai-Zhen, Zheng Yan-Lan, Xu Gang-Yi, and Qi Ming. "Room-Temperature AlGaAsSb/InGaAsSb Multi-Quantum-Well Lasers with High Characteristic Temperature." Chinese Physics Letters 20, no. 8 (July 30, 2003): 1376–78. http://dx.doi.org/10.1088/0256-307x/20/8/357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yin, M., G. R. Nash, S. D. Coomber, L. Buckle, P. J. Carrington, A. Krier, A. Andreev, et al. "GaInSb/AlInSb multi-quantum-wells for mid-infrared lasers." Applied Physics Letters 93, no. 12 (September 22, 2008): 121106. http://dx.doi.org/10.1063/1.2990224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

LUO, YI, and WEI WANG. "DISTRIBUTED FEEDBACK SEMICONDUCTOR LASERS AND THEIR APPLICATION IN PHOTONIC INTEGRATED DEVICES." International Journal of High Speed Electronics and Systems 07, no. 03 (September 1996): 409–28. http://dx.doi.org/10.1142/s0129156496000220.

Full text
Abstract:
Distributed feedback (DFB) semiconductor lasers, especially those with gain-coupled (GC) mechanisms, are studied. A GaAlAs/GaAs multi-quantum well GC-DFB laser with a loss grating is fabricated using MBE for the first time. A 1.3 µm InGaAsP/InP DFB laser with a loss grating and one with a gain grating formed by injected carriers are developed by LPE and MOVPE, respectively. GC-DFB lasers monolithically integrated with electroabsorption modulator is studied systematically for the first time. A novel integrated device structure is proposed and fabricated successfully.
APA, Harvard, Vancouver, ISO, and other styles
27

Ackerman, D. A., P. A. Morton, G. E. Shtengel, M. S. Hybertsen, R. F. Kazarinov, T. Tanbun‐Ek, and R. A. Logan. "Analysis of T0 in 1.3 μm multi‐quantum‐well and bulk active lasers." Applied Physics Letters 66, no. 20 (May 15, 1995): 2613–15. http://dx.doi.org/10.1063/1.113101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Teng, J. H., S. J. Chua, Y. H. Huang, G. Li, Z. H. Zhang, A. Saher Helmy, and J. H. Marsh. "Multi-wavelength lasers fabricated by an Al layer controlled quantum well intermixing technology." Journal of Applied Physics 88, no. 6 (September 15, 2000): 3458–62. http://dx.doi.org/10.1063/1.1289049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kito, Masahiro, Shinji Nakamura, Nobuyuki Otsuka, Masato Ishino, and Yasushi Matsui. "New Structure of1.3 µmStrained-Layer Multi-Quantum Well Complex-Coupled Distributed Feedback Lasers." Japanese Journal of Applied Physics 35, Part 1, No. 2B (February 28, 1996): 1375–77. http://dx.doi.org/10.1143/jjap.35.1375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sugiura, Hideo, Matsuyuki Ogasawara, Manabu Mitsuhara, Hiromi Oohashi, and Toshimasa Amano. "Metalorganic molecular beam epitaxy of strain‐compensated InAsP/InGaAsP multi‐quantum‐well lasers." Journal of Applied Physics 79, no. 3 (February 1996): 1233–37. http://dx.doi.org/10.1063/1.361016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mondry, M. J., E. J. Tarsa, and L. A. Coldren. "Molecular beam epitaxial growth of strained AIGalnAs multi-quantum well lasers on InP." Journal of Electronic Materials 25, no. 6 (June 1996): 948–54. http://dx.doi.org/10.1007/bf02666729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stanton, Eric, Alexander Spott, Jon Peters, Michael Davenport, Aditya Malik, Nicolas Volet, Junqian Liu, et al. "Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers." Photonics 6, no. 1 (January 24, 2019): 6. http://dx.doi.org/10.3390/photonics6010006.

Full text
Abstract:
Multi-spectral midwave-infrared (mid-IR) lasers are demonstrated by directly bonding quantum cascade epitaxial gain layers to silicon-on-insulator (SOI) waveguides with arrayed waveguide grating (AWG) multiplexers. Arrays of distributed feedback (DFB) and distributed Bragg-reflection (DBR) quantum cascade lasers (QCLs) emitting at ∼4.7 µm wavelength are coupled to AWGs on the same chip. Low-loss spectral beam combining allows for brightness scaling by coupling the light generated by multiple input QCLs into the fundamental mode of a single output waveguide. Promising results are demonstrated and further improvements are in progress. This device can lead to compact and sensitive chemical detection systems using absorption spectroscopy across a broad spectral range in the mid-IR as well as a high-brightness multi-spectral source for power scaling.
APA, Harvard, Vancouver, ISO, and other styles
33

Vivet, L., B. Dubreuil, T. Legrand, M. Schneider, and C. Vieu. "Laser irradiation of GaAsGaAlAs multi-quantum well structure." Applied Surface Science 119, no. 1-2 (September 1997): 117–26. http://dx.doi.org/10.1016/s0169-4332(98)80000-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nakamura, Shuji, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, and Yasunobu Sugimoto. "InGaN-Based Multi-Quantum-Well-Structure Laser Diodes." Japanese Journal of Applied Physics 35, Part 2, No. 1B (January 15, 1996): L74—L76. http://dx.doi.org/10.1143/jjap.35.l74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Imamoto, H., F. Sato, K. Imanaka, and M. Shimura. "AlGaAs/GaAs superlattice multi-quantum-well laser diode." Superlattices and Microstructures 5, no. 2 (January 1989): 167–70. http://dx.doi.org/10.1016/0749-6036(89)90276-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xu Gang-Yi and Li Ai-Zhen. "Optimal design of the active regions for InGaAsSb/AlGaAsSblong wavelength multi quantum well lasers." Acta Physica Sinica 53, no. 1 (2004): 218. http://dx.doi.org/10.7498/aps.53.218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jiang, Y., M. C. Teich, and W. I. Wang. "Carrier lifetimes and threshold currents in HgCdTe double heterostructure and multi‐quantum‐well lasers." Journal of Applied Physics 69, no. 10 (May 15, 1991): 6869–75. http://dx.doi.org/10.1063/1.347676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Uomi, Kazuhisa, Masahiro Aoki, Tomonobu Tsuchiya, and Atsushk Takai. "High-speed 1.55 μm InGaAs/InGaAsP multi-quantum well λ/4-shifted DFB lasers." Fiber and Integrated Optics 13, no. 1 (January 1994): 17–29. http://dx.doi.org/10.1080/01468039408202219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sin, Yongkun, Zachary Lingley, Talin Ayvazian, Miles Brodie, and Neil Ives. "Catastrophic Optical Bulk Damage – A New Failure Mode in High-Power InGaAs-AlGaAs Strained Quantum Well Lasers." MRS Advances 3, no. 57-58 (2018): 3329–45. http://dx.doi.org/10.1557/adv.2018.474.

Full text
Abstract:
ABSTRACTHigh-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers with emission wavelengths of 910 − 980 nm are extensively used in various fiber lasers and amplifiers for both telecom and defense applications. In particular, underseas and satellite communication systems require stringent reliability from these lasers. Since these lasers predominantly fail by catastrophic and sudden degradation due to COD, it is crucial especially for space satellite applications to investigate reliability, failure modes, and degradation mechanisms of these lasers. Catastrophic optical mirror damage (COMD) was known to be the only failure mode until our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group reported that bulk failure due to catastrophic optical bulk damage (COBD) has become the dominant failure mode of both SM and MM lasers. Since there have been limited reports on COBD compared to COMD, the intent of this paper is to introduce our studies on COBD that have spanned the last decade. We investigated reliability, failure modes, and degradation processes in SM and MM InGaAs-AlGaAs strained QW lasers by performing short-term step-stress tests and long-term accelerated life-tests as well as failure mode analyses using various nondestructive and destructive micro-analytical techniques including electron beam induced current (EBIC), time-resolved electroluminescence (EL), deep level transient spectroscopy (DLTS), focused ion beam (FIB), and high-resolution TEM. EBIC and EL techniques were employed to study dark line defects generated in degraded lasers stressed under different test conditions. Time-resolved EL techniques were employed to study initiation and progressions of dark spots and dark lines in real time as lasers were aged. DLTS techniques were employed to study electron traps in both pristine and degraded lasers. Lastly, FIB and high-resolution TEM were employed to prepare cross sectional and plan view TEM specimens to study DLD areas in post-aged lasers. We also report our current understanding on degradation mechanisms responsible for COBD in both SM and MM lasers.
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Shanglin, Mohammadreza Sanadgol Nezami, David Rolston, and Odile Liboiron-Ladouceur. "A Compact High-Efficient Equivalent Circuit Model of Multi-Quantum-Well Vertical-Cavity Surface-Emitting Lasers for High-Speed Interconnects." Applied Sciences 10, no. 11 (June 2, 2020): 3865. http://dx.doi.org/10.3390/app10113865.

Full text
Abstract:
Due to their low power consumption, high modulation speed, and low cost, vertical-cavity surface-emitting lasers (VCSEL) dominate short-reach data communications as the light source. In this paper, we propose a compact equivalent circuit model with noise effects for high-speed multi-quantum-well (MQW) VCSELs. The model comprehensively accounts for the carrier and photons dynamisms of a MQW structure, which includes separate confinement heterostructure (SCH) layers, barrier (B) layers, and quantum well (QW) layers. The proposed model is generalized to various VCSEL designs and accommodates a flexible number of quantum wells. Experimental validation of the model is performed at 25 Gb/s with a self-wire-bonded 850 nm VCSEL.
APA, Harvard, Vancouver, ISO, and other styles
41

SCHERER, A., J. O’BRIEN, G. ALMOGY, W. H. XU, A. YARIV, J. L. JEWELL, K. UOMI, B. J. YOO, and R. J. BHAT. "VERTICAL CAVITY SURFACE EMITTING LASERS WITH DIELECTRIC MIRRORS." International Journal of High Speed Electronics and Systems 05, no. 04 (December 1994): 543–67. http://dx.doi.org/10.1142/s012915649400022x.

Full text
Abstract:
We have developed new low threshold surface emitting laser designs with dielectric high reflectivity top mirrors. Here, we describe the characteristics of these surface emitting vertical cavity lasers (VCSELs) which exhibit stable mode patterns and low threshold currents. The new device fabrication sequence which we employ is able to adjust the emission wavelength of the lasers during the final fabrication step and allow the development of stable multi-wavelength laser arrays. These quantum-well based laser diodes are demonstrated at 0.72 μm with threshold currents of 20 mA, at 0.85 μm with threshold currents of 3 mA, at 0.98 μm with threshold currents of 4 mA, and at 1.55 μm with threshold currents of 17 mA. Our VCSELs also display remarkably low threshold voltages, thus minimizing the laser power dissipation and improving the wallplug efficiency. The flexibility resulting from depositing one or both of the mirrors after the fabrication of the laser diodes opens the way to the development of new and more versatile laser structures.
APA, Harvard, Vancouver, ISO, and other styles
42

Nakamura, Shuji, Masayuki Senoh, Shin‐ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, and Yasunobu Sugimoto. "Characteristics of InGaN multi‐quantum‐well‐structure laser diodes." Applied Physics Letters 68, no. 23 (June 3, 1996): 3269–71. http://dx.doi.org/10.1063/1.116570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nakamura, Shuji, Masayuki Senoh, Shin‐ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Yasunobu Sugimoto, and Hiroyuki Kiyoku. "Ridge‐geometry InGaN multi‐quantum‐well‐structure laser diodes." Applied Physics Letters 69, no. 10 (September 2, 1996): 1477–79. http://dx.doi.org/10.1063/1.116913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sugiura, Hideo, Masayuki Itoh, Norio Yamamoto, Matsuyuki Ogasawara, Kennji Kishi, and Yasuhiro Kondo. "Metalorganic molecular beam epitaxy of 1.3 μm wavelength tensile‐strained InGaAsP multi‐quantum‐well lasers." Applied Physics Letters 68, no. 23 (June 3, 1996): 3213–15. http://dx.doi.org/10.1063/1.116440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ilroy, P. M., A. Kurobe, and Y. Uematsu. "Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers." IEEE Journal of Quantum Electronics 21, no. 12 (December 1985): 1958–63. http://dx.doi.org/10.1109/jqe.1985.1072606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tsang, W. T., F. S. Choa, R. A. Logan, T. Tanbun‐Ek, and A. M. Sergent. "All‐gaseous doping during chemical‐beam epitaxial growth of InGaAs/InGaAsP multi‐quantum‐well lasers." Applied Physics Letters 59, no. 9 (August 26, 1991): 1008–10. http://dx.doi.org/10.1063/1.106327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Williams, P. J., D. J. Robbins, R. Cush, M. D. Scott, J. I. Davies, A. C. Marshall, J. Riffat, and A. C. Carter. "Effect of barrier width on performance of long wavelength GainAs/InP multi-quantum-well lasers." Electronics Letters 24, no. 14 (1988): 859. http://dx.doi.org/10.1049/el:19880585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Belenky, G. L., C. L. Reynolds, R. F. Kazarinov, V. Swaminathan, S. L. Luryi, and J. Lopata. "Effect of p-doping profile on performance of strained multi-quantum-well InGaAsP-InP lasers." IEEE Journal of Quantum Electronics 32, no. 8 (1996): 1450–55. http://dx.doi.org/10.1109/3.511558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hirayama, Y., M. Morinaga, M. Onomura, M. Tanimura, M. Tohyama, M. Funemizu, M. Kushibe, N. Suzuki, and M. Nakamura. "High-speed 1.5- mu m compressively strained multi-quantum well self-aligned constricted mesa DFB lasers." Journal of Lightwave Technology 10, no. 9 (1992): 1272–80. http://dx.doi.org/10.1109/50.156879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tsang, W. T., F. S. Choa, M. C. Wu, Y. K. Chen, R. A. Logan, T. Tanbun‐Ek, S. N. G. Chu, K. Tai, A. M. Sergent, and K. W. Wecht. "1.5 μm wavelength InGaAs/InGaAsP distributed feedback multi‐quantum‐well lasers grown by chemical beam epitaxy." Applied Physics Letters 59, no. 19 (November 4, 1991): 2375–77. http://dx.doi.org/10.1063/1.106020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography