Contents
Academic literature on the topic 'Multi-sensitiv'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-sensitiv.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-sensitiv"
Stallard, N., and A. Whitehead. "Estimating the magnitude of carcinogenic effects in long-term animal studies." Human & Experimental Toxicology 14, no. 8 (August 1995): 643–53. http://dx.doi.org/10.1177/096032719501400804.
Full textSchulz, Undine. "Antikörper gegen humane Leukozytenantigene (HLA) bei männlichen Apheresespendern ohne klassische Alloimmunisierung." Transfusionsmedizin - Immunhämatologie · Hämotherapie · Transplantationsimmunologie · Zelltherapie 10, no. 04 (November 2020): 213–20. http://dx.doi.org/10.1055/a-1119-1946.
Full textDissertations / Theses on the topic "Multi-sensitiv"
Melchert, Christian. "Entwicklung multi-stimuli sensitiver Materialien auf der Basis von flüssigkristallinen Elastomeren." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6286/.
Full textActively moving polymers are high scientific significance due to their ability to move actively in response to an external stimulus. Most notably shape-change and shape-memory polymers are in the focus of current research. Shape-changing polymers exhibit a non-contact deformation from a permanent into a temporary shape, which is just stable as long the material is exposed to an external stimulus. In contrast shape-memory polymers are capable of a fixed temporary shape due to the formation of additional temporary netpoints, while the deformation is proceed by applying mechanical stress. A polymeric material, which combines both functions would result into a material that possesses the advantages of the shape-change, as well as the shape-memory effect. In this work, the coupling of two known functions is investigated which results into a new switchable function. Therefore, two different concepts were developed requiring different material structures. For the first concept monodomain, smectic liquid-crystalline elastomers (LCE) containing azobenzene moieties were prepared and the coupling of the light-induced shape-change with the thermally-induced shape-memory effect was investigated. These oriented LCE's exhibit a non-contact deformation into a temporary shape, above the glass transition temperature (Tg), due to the irradiation with UV-light. The temporary shape could be fixed by cooling the material below Tg, while the irradiation with light was kept constant. The permanent shape could be recovered by additional heating above Tg. This process could be repeated several times. Therefore, a new switchable function was developed, which based on the coupling of the light-induced shape-change with the thermally induced shape-memory effect. The second concept required a multi-component system and the coupling of the thermally-induced shape-memory withe the light-induced shape-change effect was investigated. The multi component system consists of a LCE-core and a photosensitive layer. Nematic, main-chain elastomers were prepared, which possess of low transition temperatures and high actuation performances. The photosensitive layer consists of cinnamylidene acetic moieties, that were attached to a siloxane backbone, while the photoreversibility of the light-induced [2+2]-cycloaddition was shown. Furthermore, the photosensitive layer was covalently attached to the surface of the LCE-core. While both components showed their functionality, the coupling of the thermally-induced shape-change with the light-induced shape-memory effect was not successful up to now. The Adjustment of both components on each other has to be improved. Mainly the variation of the layer thickness of both structural components should be in the focus of future work.
Corten, Cathrin Carolin. "Synthese und Charakterisierung dünner Hydrogelschichten mit modulierbaren Eigenschaften." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209463829168-95283.
Full textKretschmer, Katja. "Dünne, multi-sensitive Hydrogelschichten aus photovernetzbaren Blockcopolymeren." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1132572580132-69304.
Full text