Academic literature on the topic 'Multi-window based ensemble learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-window based ensemble learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-window based ensemble learning"
Li, Hu, Ye Wang, Hua Wang, and Bin Zhou. "Multi-window based ensemble learning for classification of imbalanced streaming data." World Wide Web 20, no. 6 (March 8, 2017): 1507–25. http://dx.doi.org/10.1007/s11280-017-0449-x.
Full textAbdillah, Abid Famasya, Cornelius Bagus Purnama Putra, Apriantoni Apriantoni, Safitri Juanita, and Diana Purwitasari. "Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data." Journal of Information Systems Engineering and Business Intelligence 8, no. 1 (April 26, 2022): 42–50. http://dx.doi.org/10.20473/jisebi.8.1.42-50.
Full textMeng, Jinyu, Zengchuan Dong, Yiqing Shao, Shengnan Zhu, and Shujun Wu. "Monthly Runoff Forecasting Based on Interval Sliding Window and Ensemble Learning." Sustainability 15, no. 1 (December 21, 2022): 100. http://dx.doi.org/10.3390/su15010100.
Full textShen, Zhiqiang, Zhankui He, and Xiangyang Xue. "MEAL: Multi-Model Ensemble via Adversarial Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4886–93. http://dx.doi.org/10.1609/aaai.v33i01.33014886.
Full textKoohzadi, Maryam, Nasrollah Moghadam Charkari, and Foad Ghaderi. "Unsupervised representation learning based on the deep multi-view ensemble learning." Applied Intelligence 50, no. 2 (July 31, 2019): 562–81. http://dx.doi.org/10.1007/s10489-019-01526-0.
Full textShan, Shuo, Chenxi Li, Zhetong Ding, Yiye Wang, Kanjian Zhang, and Haikun Wei. "Ensemble learning based multi-modal intra-hour irradiance forecasting." Energy Conversion and Management 270 (October 2022): 116206. http://dx.doi.org/10.1016/j.enconman.2022.116206.
Full textAboneh, Tagel, Abebe Rorissa, and Ramasamy Srinivasagan. "Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification." Technologies 10, no. 1 (January 26, 2022): 17. http://dx.doi.org/10.3390/technologies10010017.
Full textKwon, Beom, and Sanghoon Lee. "Ensemble Learning for Skeleton-Based Body Mass Index Classification." Applied Sciences 10, no. 21 (November 4, 2020): 7812. http://dx.doi.org/10.3390/app10217812.
Full textKrasnopolsky, Vladimir M., and Ying Lin. "A Neural Network Nonlinear Multimodel Ensemble to Improve Precipitation Forecasts over Continental US." Advances in Meteorology 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/649450.
Full textKang, Xiangping, Deyu Li, and Suge Wang. "A multi-instance ensemble learning model based on concept lattice." Knowledge-Based Systems 24, no. 8 (December 2011): 1203–13. http://dx.doi.org/10.1016/j.knosys.2011.05.010.
Full textDissertations / Theses on the topic "Multi-window based ensemble learning"
Ontañón, Villar Santi. "Ensemble Case Based Learning for Multi-Agent Systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/3050.
Full textConcretamente, presentaremos un marco de trabajo llamado Razonamiento Basado en Casos Multi-Agente (MAC), una aproximación al CBR basada en agentes. Cada agente individual en un sistema MAC es capaz de aprender y solucionar problemas individualmente utilizando CBR con su base de casos individual. Además, cada base de
casos es propiedad de un agente individual, y cualquier información de dicha base de casos será revelada o compartida únicamente si el agente lo decide así. Por tanto, este marco de trabajo preserva la privacidad de los datos y la autonomía de los agentes para revelar información.
Ésta tesis se centra en desarrollar estrategias para que agentes individuales con capacidad de aprender puedan incrementar su rendimiento tanto cuando trabajan individualmente como cuando trabajan como un ensemble. Además, las decisiones en un sistema MAC se toman de manera descentralizada, dado que cada agente tiene autonomía de decisión. Por tanto, las técnicas desarrolladas en este marco de trabajo consiguen un incremento del rendimiento como resultado de decisiones individuales tomadas de manera descentralizada. Concretamente, presentaremos tres tipos de estrategias: estrategias para crear ensembles de agentes, estrategias para realizar retención de casos en sistemas multi-agente, y estrategias para realizar redistribución de casos.
This monograph presents a framework for learning in a distributed data scenario with decentralized decision making. We have based our framework in Multi-Agent Systems (MAS) in order to have decentralized decision making, and in Case-Based Reasoning (CBR), since the lazy learning nature of CBR is suitable for dynamic multi-agent systems. Moreover, we are interested in autonomous agents that collaboratively
work as ensembles. An ensemble of agents solves problems in the following way: each individual agent solves the problem at hand individually and makes its individual prediction, then all those predictions are aggregated to form a global prediction. Therefore, in this work we are interested in developing ensemble case based
learning strategies for multi-agent systems.
Specifically, we will present the Multi-Agent Case Based Reasoning (MAC) framework, a multi-agent approach to CBR. Each individual agent in a MAC system is capable of individually learn and solve problems using CBR with an individual case base. Moreover, each case base is owned and managed by an individual agent, and any information is disclosed or shared only if the agent decides so. Thus, this framework preserves the privacy of data, and the autonomy to disclose data.
The focus of this thesis is to develop strategies so that individual learning agents improve their performance both individually and as an ensemble. Moreover, decisions in the MAC framework are made in a decentralized way since each individual agent has decision autonomy. Therefore, techniques developed in this framework achieve an improvement of individual and ensemble performance as a result of individual decisions made in a decentralized way. Specifically, we will present three kind of strategies: strategies to form ensembles of agents, strategies to perform case retention in multi-agent systems, and strategies to perform case redistribution.
Börthas, Lovisa, and Sjölander Jessica Krange. "Machine Learning Based Prediction and Classification for Uplift Modeling." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266379.
Full textBehovet av att kunna modellera den verkliga vinsten av riktad marknadsföring har lett till den idag vanligt förekommande metoden inkrementell responsanalys. För att kunna utföra denna typ av metod krävs förekomsten av en existerande testgrupp samt kontrollgrupp och målet är således att beräkna differensen mellan de positiva utfallen i de två grupperna. Sannolikheten för de positiva utfallen för de två grupperna kan effektivt estimeras med statistiska maskininlärningsmetoder. De inkrementella responsanalysmetoderna som undersöks i detta projekt är subtraktion av två modeller, att modellera den inkrementella responsen direkt samt en klassvariabeltransformation. De statistiska maskininlärningsmetoderna som tillämpas är random forests och neurala nätverk samt standardmetoden logistisk regression. Datan är samlad från ett väletablerat detaljhandelsföretag och målet är därmed att undersöka vilken inkrementell responsanalysmetod och maskininlärningsmetod som presterar bäst givet datan i detta projekt. De mest avgörande aspekterna för att få ett bra resultat visade sig vara variabelselektionen och mängden kontrolldata i varje dataset. För att få ett lyckat resultat bör valet av maskininlärningsmetod vara random forests vilken används för att modellera den inkrementella responsen direkt, eller logistisk regression tillsammans med en klassvariabeltransformation. Neurala nätverksmetoder är känsliga för ojämna klassfördelningar och klarar därmed inte av att erhålla stabila modeller med den givna datan. Vidare presterade subtraktion av två modeller dåligt på grund av att var modell tenderade att fokusera för mycket på att modellera klassen i båda dataseten separat, istället för att modellera differensen mellan dem. Slutsatsen är således att en metod som modellerar den inkrementella responsen direkt samt en relativt stor kontrollgrupp är att föredra för att få ett stabilt resultat.
Xia, Junshi. "Multiple classifier systems for the classification of hyperspectral data." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT047/document.
Full textIn this thesis, we propose several new techniques for the classification of hyperspectral remote sensing images based on multiple classifier system (MCS). Our proposed framework introduces significant innovations with regards to previous approaches in the same field, many of which are mainly based on an individual algorithm. First, we propose to use Rotation Forests with several linear feature extraction and compared them with the traditional ensemble approaches, such as Bagging, Boosting, Random subspace and Random Forest. Second, the integration of the support vector machines (SVM) with Rotation subspace framework for context classification is investigated. SVM and Rotation subspace are two powerful tools for high-dimensional data classification. Therefore, combining them can further improve the classification performance. Third, we extend the work of Rotation Forests by incorporating local feature extraction technique and spatial contextual information with Markov random Field (MRF) to design robust spatial-spectral methods. Finally, we presented a new general framework, Random subspace ensemble, to train series of effective classifiers, including decision trees and extreme learning machine (ELM), with extended multi-attribute profiles (EMAPs) for classifying hyperspectral data. Six RS ensemble methods, including Random subspace with DT (RSDT), Random Forest (RF), Rotation Forest (RoF), Rotation Random Forest (RoRF), RS with ELM (RSELM) and Rotation subspace with ELM (RoELM), are constructed by the multiple base learners. The effectiveness of the proposed techniques is illustrated by comparing with state-of-the-art methods by using real hyperspectral data sets with different contexts
Pesaranghader, Ali. "A Reservoir of Adaptive Algorithms for Online Learning from Evolving Data Streams." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38190.
Full textEngen, Vegard. "Machine learning for network based intrusion detection : an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data." Thesis, Bournemouth University, 2010. http://eprints.bournemouth.ac.uk/15899/.
Full textYang, Ming-Han, and 楊明翰. "Improved Neural Network Based Acoustic Modeling Leveraging Multi-task Learning and Ensemble Learning for Meeting Speech Recognition." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/99106158778715235461.
Full text國立臺灣師範大學
資訊工程學系
104
This thesis sets out to explore the use of multi-task learning (MTL) and ensemble learning techniques for more accurate estimation of the parameters involved in neural network based acoustic models, so as to improve the accuracy of meeting speech recognition. Our main contributions are three-fold. First, we conduct an empirical study to leverage various auxiliary tasks to enhance the performance of multi-task learning on meeting speech recognition. Furthermore, we also study the synergy effect of combing multi-task learning with disparate acoustic models, such as deep neural network (DNN) and convolutional neural network (CNN) based acoustic models, with the expectation to increase the generalization ability of acoustic modeling. Second, since the way to modulate the contribution (weights) of different auxiliary tasks during acoustic model training is far from optimal and actually a matter of heuristic judgment, we thus propose a simple model adaptation method to alleviate such a problem. Third, an ensemble learning method is investigated to systematically integrate the various acoustic models (weak learners) trained with multi-task learning. A series of experiments have been carried out on the augmented multi-party interaction (AMI) and Mandarin meeting recording (MMRC) corpora, which seem to reveal the effectiveness of our proposed methods in relation to several existing baselines.
(6790182), Francisco D. Vaca. "An Ensemble Learning Based Multi-level Network Intrusion Detection System for Wi-Fi Dominant Networks." Thesis, 2019.
Find full textWang, Ye. "Robust Text Mining in Online Social Network Context." Thesis, 2018. https://vuir.vu.edu.au/38645/.
Full textBook chapters on the topic "Multi-window based ensemble learning"
Wang, Ye, Hu Li, Hua Wang, Bin Zhou, and Yanchun Zhang. "Multi-Window Based Ensemble Learning for Classification of Imbalanced Streaming Data." In Lecture Notes in Computer Science, 78–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26187-4_6.
Full textKörner, Christine, and Stefan Wrobel. "Multi-class Ensemble-Based Active Learning." In Lecture Notes in Computer Science, 687–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11871842_68.
Full textWang, Qing, and Liang Zhang. "Ensemble Learning Based on Multi-Task Class Labels." In Advances in Knowledge Discovery and Data Mining, 464–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13672-6_44.
Full textCervantes, Louie, Jung-sik Lee, and Jaewan Lee. "Agent-Based Approach to Distributed Ensemble Learning of Fuzzy ARTMAP Classifiers." In Agent and Multi-Agent Systems: Technologies and Applications, 805–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72830-6_84.
Full textMinn, Sein, Michel C. Desmarais, and ShunKai Fu. "Refinement of a Q-matrix with an Ensemble Technique Based on Multi-label Classification Algorithms." In Adaptive and Adaptable Learning, 165–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45153-4_13.
Full textWang, Tianhao, Tianrang Weng, Jiacheng Ji, Mingjun Zhong, and Baili Zhang. "A Text Multi-label Classification Scheme Based on Resampling and Ensemble Learning." In Advances in Artificial Intelligence and Security, 67–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06761-7_6.
Full textYi, Minhan, Dandan Zhao, Chenglin Liao, and Hongpeng Yin. "MK-SCE:A Novel Multi-Kernel Based Self-adapt Concept Drift Ensemble Learning." In Lecture Notes in Electrical Engineering, 492–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6324-6_50.
Full textWu, Qinggang, and Zhongchi Liu. "Constrained Energy Minimization for Hyperspectral Multi-target Detection Based on Ensemble Learning." In Advanced Data Mining and Applications, 406–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95408-6_31.
Full textKang, Yuxin, Hansheng Li, Xin Han, Boju Pan, Yuan Li, Yan Jin, Qirong Bu, Lei Cui, Jun Feng, and Lin Yang. "Automated Tumor Proportion Scoring for Assessment of PD-L1 Expression Based on Multi-Stage Ensemble Strategy." In Machine Learning in Medical Imaging, 70–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59861-7_8.
Full textSaikia, Aditya, Anil Hazarika, Bikram Patir, and Amarprit Singh. "A Supervised Ensemble Subspace Learning Model Based on Multi-view Feature Fusion Employing Multi-template EMG Signals." In Studies in Big Data, 269–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95239-6_10.
Full textConference papers on the topic "Multi-window based ensemble learning"
Xu, Junyi, Le Li, and Ming Ji. "Ensemble learning based multi-source information fusion." In The Second International Conference on Image, Video Processing and Artificial Intelligence, edited by Ruidan Su. SPIE, 2019. http://dx.doi.org/10.1117/12.2542941.
Full textLi, Hu, Peng Zou, Weihong Han, Rongze Xia, and Fei Liu. "Ensemble multi-label learning based on neural network." In the Fifth International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2499788.2499808.
Full textWu, Yonglin, Jun Zhang, Yue Wu, Gengxin Ning, and Cui Yang. "Speech Enhancement Based on Multi-Objective Ensemble Learning." In 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2022. http://dx.doi.org/10.1109/icspcc55723.2022.9984412.
Full textYan, Jie. "Ensemble SVM Regression Based Multi-View Face Detection System." In 2007 IEEE Workshop on Machine Learning for Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/mlsp.2007.4414300.
Full textJin, Jing, Yahui Zhao, and Rongyi Cui. "Research on Multi-granularity Ensemble Learning Based on Korean." In CONF-CDS 2021: The 2nd International Conference on Computing and Data Science. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448734.3450777.
Full textJing-Jing Cao, Sam Kwong, Ran Wang, and Ke Li. "AN indicator-based selection multi-objective evolutionary algorithm with preference for multi-class ensemble." In 2014 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2014. http://dx.doi.org/10.1109/icmlc.2014.7009108.
Full textWang, Peng, Peng Zhang, and Li Guo. "Mining Multi-label Data Streams Using Ensemble-based Active Learning." In Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611972825.97.
Full textTan, Jiajie, and Ning Li. "Ensemble Learning Based Multi-Color Space in Convolutional Neural Network." In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865681.
Full textKocyigit, Gokhan, and Yusuf Yaslan. "Dictionary ensemble based multi instance active learning method for image categorization." In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7495966.
Full textAvila, Nelson Fabian, Von-Wun Soo, Wan-Yu Yu, and Chia-Chi Chu. "Capacity-based service restoration using Multi-Agent technology and ensemble learning." In 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP). IEEE, 2015. http://dx.doi.org/10.1109/isap.2015.7325546.
Full text