Dissertations / Theses on the topic 'Multicast Congestion Control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'Multicast Congestion Control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Onal, Kerem. "Internet Multicast Congestion Control." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12604726/index.pdf.
Full textsingle-rate, end-to-end, rate based&rdquo
class of protocols, namely LESBCC and TFMCC are evaluated with respect to their intersession fairness (TCP-friendliness), smoothness and responsiveness criteria. Throughout the experiments, which are conducted using a widely accepted network simulation tool &lsquo
ns&rsquo
, different topologies have been employed.
Zhang, Zaichen, and 張在琛. "Network-supported internet multicast congestion and error control." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243915.
Full textKulatunga, Chamil. "Enforcing receiver-driven multicast congestion control using ECN-Nonce." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=33532.
Full textWidmer, Jörg. "Equation based congestion control for unicast and multicast data streams." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10605052.
Full textPuangpronpitag, Somnuk. "Design and performance evaluation of multicast congestion control for the Internet." Thesis, University of Leeds, 2003. http://etheses.whiterose.ac.uk/1312/.
Full textSari, Riri Fitri. "Performance evaluation of active network-based unicast and multicast congestion control protocols." Thesis, University of Leeds, 2003. http://etheses.whiterose.ac.uk/1321/.
Full textKrob, Andrea Collin. "Adaptive Layered Multicast TCP-Friendly : análise e validação experimental." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/25492.
Full textOne of the obstacles for the widespread use of the multicast in the global Internet is the development of adequate protocols for congestion control. One factor that contributes for this problem is the heterogeneity of equipments, enlaces and conditions of access of the receivers, which increases the implementation and validation complexity of these protocols. Due to the number (thousands) of receivers simultaneously involved in multicast, the challenge of these protocols is even higher. Besides the issues related to the network congestion, it is necessary to consider factors such as synchronism, feedback control, fairness, among others. For these reasons, the multicast congestion control protocols have been a topic of intense research in recent years. The ALMTF protocol (Adaptive Layered Multicast TCP-Friendly), which is part of project SAM, is one of the alternatives for the multicast congestion control in the Internet. One advantage of this algorithm is its ability to infer the network congestion level, assigning the best receiving rate for each receptor. Besides that, the protocol manages the received rate, aiming to achieve fairness and impartiality with the competing network traffic. The ALMTF was developed originally in a Ph.D. Thesis and had its validation under NS-2 simulator. The goal this work is to extend the protocol ALMTF for a real network, validating its mechanisms and considering new alternatives to adapt it for this environment. Moreover, to make the comparison of the real results with the simulation, being identified the differences and promoting the experimental research in the area.
Peradotto, Roberto. "Avaliação do protocolo multicast e PePcc para transmissões confiáveis na Internet." Universidade do Vale do Rio do Sinos, 2003. http://www.repositorio.jesuita.org.br/handle/UNISINOS/2209.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Aplicações como a World-Wide Web, correio eletrônico e transferência de arquivos são a principal fonte de tráfego em redes de comunicação entre computadores hoje em dia. A tecnologia IP, base da Internet, não dispõe de reservas de recursos, e a divisão justa da capacidade da rede entre os fluxos que competem se dá através de mecanismos que devem estar presentes nos protocolos executados nas estações fim (hosts). Tal é denominado controle de congestionamento fim a fim. O tráfego na Internet é predominantemente composto por fluxos TCP, que é dotado de controle de congestionamento. Para o bom funcionamento da Internet, novos protocolos de transporte ou de aplicação devem incluir mecanismos de controle de congestionamento que sejam "amigáveis" ao TCP, ou seja, que não ocupem mais recursos do que deveriam. O surgimento de IP multicast viabilizou, no final nos anos 90, novas aplicações na Internet, como aplicações de trabalho em grupo, bancos de dados distribuídos, vídeo-conferência, etc. Muitas dessas aplicações
Pandey, Manoj Kumar. "A Hop-by-Hop Architecture for Multicast Transport in Ad Hoc Wireless Networks." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3119.pdf.
Full textShrinivas, V. Prasanna. "Pricing Multicast Network Services." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/270.
Full textShrinivas, V. Prasanna. "Pricing Multicast Network Services." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/270.
Full textLucas, Vincent. "Contrôle de congestion équitable pour le multicast et interface avec le niveau applicatif." Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00523422.
Full textSolera, Delgado Marta. "Control de congestión multipunto en redes IP y ATM. Diseño de protocolos de transporte multipunto fiable." Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/7038.
Full textEl soporte de conexiones multipunto, que es inmediato en muchas redes de ordenadores, por la existencia de un medio compartido, no lo es en una red ATM o en una red IP. En este tipo de redes, ofrecer una comunicación multipunto requiere de mecanismos complejos que coordinen y controlen la transmisión de información entre las fuentes y los receptores. Esta tesis doctoral estudia las comunicaciones punto a multipunto sobre las redes ATM e IP. En concreto, se diferencian dos objetivos:
· Estudiar, analizar y proponer un control de flujo punto a multipunto en la categoría de servicio Available Bit Rate (ABR) en redes ATM.
· Diseñar, analizar y simular un protocolo de transporte punto a multipunto fiable con control de congestión de tasa única para redes IP.
El control de flujo de ABR fue diseñado para comunicaciones punto a punto. Para el caso multipunto, los conmutadores deben desarrollar mecanismos que limiten y agreguen el tráfico de realimentación. Se ha desarrollado un algoritmo de consolidación que asegura que la agregación de la información de realimentación se realiza de forma correcta, mejorando la convergencia de propuestas anteriores. Este mecanismo se ha modelado matemáticamente, y se ha validado mediante simulación.
En cuanto a las comunicaciones multipunto en Internet, en este trabajo se ha desarrollado un protocolo de transporte punto a multipunto fiable, RCCMP, diseñado para ser escalable, fiable y con un control de congestión de tasa única que comparta el ancho de banda equitativamente con TCP.
El control de congestión ha sido planteado como una parte esencial del protocolo, y no como ocurre en muchas propuestas, como un componente adicional que debe ser ajustado a un protocolo de transporte. En RCCMP se combinan los objetivos de regular la tasa de transmisión y de conseguir una comunicación fiable, con el fin de simplificar y limitar el número de confirmaciones negativas que se envían desde los receptores. Para la evaluación de las prestaciones de RCCMP, se ha implementado el protocolo en el simulador ns-2.
Se ha modelado el caudal de este protocolo de transporte multipunto en función de la tasa de pérdidas y del tiempo de ida y vuelta. La principal contribución de nuestro modelo radica en la caracterización del caudal ante cambios de representante. También, se ha desarrollado un método de análisis para estimar el ancho de banda consumido por cualquier protocolo de transporte. La principal diferencia con otros trabajos es que éstos se centran únicamente en el coste de los procesos del control de errores.
Para mejorar el rendimiento de RCCMP, se ha definido y simulado otro protocolo de transporte punto a multipunto fiable de tasa única, RVCMP, que incluye un control de congestión que emula al de la implementación TCP Vegas.
Multicast communications are profitable for service providers increasing intermediate node performance and reducing traffic in their networks. In the other side, multicast benefits also the users, who are able to enjoy collaborative applications and other multicast applications.
IP and ATM network were designed to support point to point communications. The new multicast generation applications such multimedia conference, shared workspace, distance learning introduce new requirements in data transmission.
There are at least two problems that differentiate between unicast and multicast control schemes in ATM networks with ABR service. First, there is the problem of feedback implosion. The volume of feedback traffic returning to the source increases proportional to the number of destinations. Second, there is the problem of consolidation noise. It can occur when feedback from some leaves is not always received in a timely fashion at the time when RM cells need to be returned by the branch point. One of the proposals to provide multicast communications is to extend unicast traffic management control methods. One of its practical realization schemes is the extension of Enhanced Proportional Rate Control Algorithm (EPRCA) for point to multipoint connections. That proposal suffers from consolidation noise, in order to solve this drawback, a new algorithm is proposed. An analytical approach is used to quantitatively evaluate their performance by using first-order fluid approximation method.
About IP multicast communications, we propose a new protocol, called RCCMP (Reliable Congestion Controlled Multicast Protocol). It has been designed to be simple, scalable (NAK suppression), reliable and TCP-friendly. The congestion control is a central part of the protocol, where the feedback of the worse receiver is used to control a transmission window in a TCP-like fashion. The scalability issue is addressed with an exponential timer scheme that is also used to estimate the number of receivers involved in the communication. The protocol neither needs support from network elements nor maintains state information dependent of the number of receivers. This protocol has been developed in ns-2 (network simulator-2) for validating.
We develop a simple analytic characterization of the steady-state send rate as a function of loss rate and round trip time (RTT). The main contribution is that our model captures the representative changes. Also, we provide a new approach to estimate the link usage of multicast reliable transport protocols. It can be used as a benchmark to evaluate their scalability. We have chosen, as a case study, a multicast reliable transport protocol called RCCMP. The link cost is due to data, retransmitted data, and characteristic packets of multicast protocols such as control packets: control packets for estimating the number of receivers involved in the session and for getting multicast reliability.
For improving performance, we present RVCMP (Reliable Vegas Congestion controlled Multicast Protocol) that has been designed to be simple, scalable, reliable and TCP-friendly. The congestion control developed is a single-rate scheme where the feedback of the worst receiver is used to control a transmission window in a TCP Vegas-like fashion. The proposal takes the advantage from TCP Vegas of operating without inducing packet losses as a signal that there is congestion in the network to achieve a better performance. To evaluate the benefits of Vegas-like congestion control, the performance of RVCMP is compared to an analogous protocol that is based on a TCP Reno congestion control, RCCMP.
TUFAIL, MUDASSIR. "Du controle de congestion pour les flots multicast abr du reseau atm & de l'ordonnancement de paquets pour les applications sensibles au delai et a debit controle." Rennes 1, 1998. http://www.theses.fr/1998REN10079.
Full textTUFAIL, MUDASSIR Cousin Bernard. "DU CONTROLE DE CONGESTION POUR LES FLOTS MULTICAST ABR DU RESEAU ATM & DE L'ORDONNANCEMENT DE PAQUETS POUR LES APPLICATIONS SENSIBLES AU DELAI ET A DEBIT CONTROLE /." [S.l.] : [s.n.], 1998. ftp://ftp.irisa.fr/techreports/1998/PI-1204.ps.gz.
Full text"Internet Multicast Congestion Control." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12604726/index.pdf.
Full textNgo, Van Ngoc. "Congestion control for multicast /." 2005.
Find full textTypescript. Includes bibliographical references (leaves 139-145). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR11871
Gorinsky, Sergey. "Robust congestion control for IP multicast." Thesis, 2003. http://wwwlib.umi.com/cr/utexas/fullcit?p3116316.
Full textYang, Wei-Ren, and 楊惟仁. "Reliable multicast congestion control over wireless networks." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/01474894703393816415.
Full text國立中央大學
資訊工程研究所
92
The reliable multicast protocol provides the efficient delivery and the reliability to the applications. Moreover, congestion control makes the transmissions adapt the sending rate to the available bandwidth and fairly share bandwidth with the popular traffic in the networks, TCP. There are many services built on the reliable multicast congestion control protocols. With the wireless networks increasing, the multicast services are more critical for the more mobile devices accessing the Internet. But the reliable multicast congestion control protocols are affected by the wireless high loss ratio to cause the low performance. This paper presents an approach, called PGMCCW, to alleviate the influence of the wireless losses. It can differentiate the wireless losses and the congestion losses on multicast and elect the proper feedback from the multiple receivers in the different networks. The detailed algorithm is described as the following chapters and the simulations demonstrate that this scheme is effective to improve the performance on the more popular wireless networks.
Lo, Yu-Shun, and 羅友舜. "Multicast Congestion Control Strategy based on Call Admission Control." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/50978700387936967876.
Full text國立中正大學
通訊工程研究所
90
In Multicast Congestion Control research, “drop-to-zero” is a well-known problem. It means a slower receiver slows down faster receiver in the same multicast group. This is because the sender has to adapt its rate or window size to the slowest path, so that a multicast group performance could be dropped. In this paper, we propose that a call admission control (CAC) scheme manage receivers in multicast group to handle “drop-to-zero” problem and improve multicast performance. For this purpose, we integrate multicast congestion control protocol with CAC scheme and utilize the group member’s network information obtained from multicast congestion control protocol to calculate group reward. The basic idea is two-fold. First, the sender can observe the group performance in accordance with calculated group reward. Second, the sender can decide the permission that receiver ask for to join the multicast group in accordance with group reward. We expect to improve group performance and get better group reward and use simulation to analyze CAC scheme of group performance, member counts and group reward. We will show our CAC scheme can effectively drop slower receivers in multicast group and serve the majority of group receivers. The multicast group can build up the group performance and group reward to resolve “drop-to-zero” problem.
Bhattacharyya, Supratik. "Flow and congestion control for reliable multicast communication in wide -area networks." 2000. https://scholarworks.umass.edu/dissertations/AAI9960737.
Full textWidmer, Jörg Carsten [Verfasser]. "Equation-based congestion control for unicast and multicast data streams / vorgelegt von Jörg Carsten Widmer." 2003. http://d-nb.info/968349161/34.
Full textWidmer, Jörg [Verfasser]. "Equation-based congestion control for unicast and multicast data streams / vorgelegt von Jörg Carsten Widmer." 2003. http://d-nb.info/968349161/34.
Full textΠαπαζώης, Ανδρέας. "Σχεδιασμός και μελέτη απόδοσης μηχανισμών multicast σε κινητά δίκτυα επικοινωνιών." Thesis, 2010. http://nemertes.lis.upatras.gr/jspui/handle/10889/3733.
Full textIn the recent years, the use of 3rd Generation (3G) cellular networks has begun to rise in most of the countries, as in Greece. 3G networks have the capability to offer advanced services to mobile users. However, the need for higher speeds that approach the capacity of broadband communication, led to the further development of 3G networks and to the adoption of new technologies, with main representative the High Speed Packet Access (HSPA) technology. HSPA constitutes the evolution of UMTS and is known as 3.5G or 3G+ in order to indicate the upgrade from UMTS. Despite the fact that HSPA technology is expected to allow the provision of numerous broadband services, the 3rd Generation Partnership Project (3GPP), the authorized organization for the standardization of new mobile technologies, already examines new technologies that will prevail in the mobile communications industry over the next decades. This novel technology is known as Long Term Evolution (LTE) and aims at achieving increased data rates and reduced latency compared to existing mobile networks. Therefore, the mobile communications industry progressively evolves to next generation networks, with main target the achievement of the so called “Mobile Broadband”. The rapid growth of mobile communications networks has involved an increasing demand for wireless, multimedia communication and for a unified and functional system of mobile communications that is able to provide numerous broadband services to its users. On the other hand, multimedia content and service providers show an increased interest in supporting multicast data in order to effectively manage and reuse the available network resources. Additionally, more and more users require access to applications and services that until today could only be accessed by conventional wired networks. Thus, real time applications and services may face low penetration today; however, they are expected to gain high interest in future mobile networks. These applications actually reflect a modern, future way of communication among mobile users. Such mobile services include streaming live TV and streaming video. All the above constitute a series of indicative emerging applications that necessitate advanced transmission techniques. One of the most significant steps towards the provision of such demanding services is the introduction of Multimedia Broadcast/Multicast Service (MBMS). MBMS is a point-to-multipoint service in which data is transmitted from a single source entity to multiple destinations, allowing the networks resources to be shared. Actually, MBMS extends the existing UMTS infrastructure and efficiently uses network and radio resources, both in the core network and most importantly, in the air interface of UMTS, where the bottleneck is placed to a large group of users. Therefore, MBMS constitutes an efficient way to support the plethora of the emerging wireless multimedia applications and services such as IP video conferencing and video streaming. Multicast is an efficient method for data transmission to multiple destinations. Its advantage is that the sender’s data are transmitted only once over the links which are shared along the paths to a targeted set of destinations. Data duplication is restricted only in nodes where the paths diverge to different subnetworks. The present dissertation describes the investigation of several schemes that optimize the deployment of multicast transmission over mobile communication networks. The conducted research focuses on the MBMS service and examines the way that its deployment should be performed. Additionally, it investigates schemes that can assure an effective congestion control over the MBMS sessions. Finally, it examines the use of Forward Error Correction (FEC) mechanisms for reliable data transmission during the mobile multicast communication. The first major contribution that is presented in this dissertation is a novel scheme for the multicast transmission of data over mobile communication networks. This scheme has been designed with respect to the current specifications of the MBMS service defined by the 3GPP. The design of the scheme has been performed in a way that minimizes the transmitted packets and makes efficient use of the network resources. Apart from the normal multicast transmission of data over UMTS the handling of special cases caused by user mobility scenarios, is considered. It was a major goal to develop an easily deployed scheme that introduces just minor modifications in the mobile network architecture and the mobility management mechanisms that already exist. The proposed scheme has been implemented as a new module in the widely used ns-2 network simulator in order to be evaluated. The simulation experiments show that the proposed scheme can cope with the user mobility without any disruption of the service provision or any packet loss. It is important to highlight that this new ns-2 module can be employed by researchers as a platform to validate and analyze multicast mechanisms over mobile networks. Some areas of active research that may be boosted by the deployment of this new module are MBMS service congestion control, mobile multicast group management, multicast radio resource management, MBMS Quality of Service and analysis and testing of user mobility scenarios. In this dissertation is ns-2 module has been used for the evaluation of two congestion control schemes for the multicast transmission over mobile networks. Congestion control is a policy that adapts the source transmission rate according to the network congestion. In IP multicast, User Datagram Protocol (UDP) is used for the transport layer. This protocol does not implement any congestion control. Instead, the Transmission Control Protocol (TCP) adapts its transmission rate according to network congestion. The coexistence of multicast traffic and TCP traffic may lead to unfair use of network resources. In order to prevent this situation, the deployment of multicast congestion control is indispensable. This kind of congestion control is well known as TCP-friendliness. The adoption of a multicast congestion control in cellular networks poses an additional set of challenges. All the algorithms for congestion control treat the packet loss as a manifestation of network congestion. This assumption does not always apply to networks with radio links, in which packet loss is often induced by reasons other than network congestion like noise or radio link error. In these cases, the network reaction should not be a drastic reduction of the sender’s transmission rate. Another limitation is that the mobile terminals’ computing power cannot afford complicated statistics and traffic measurements, which in turn means that such operations should not be executed on the mobile equipment. In the part of this dissertation that is related with the multicast congestion control over mobile networks, the applicability of two well-known multicast congestion control schemes over mobile networks is investigated. The examined schemes are namely: the TCP-Friendly Multicast Congestion Control (TFMCC) and the Pragmatic General Multicast Congestion Control (PGMCC). Both schemes belong to the class of single-rate congestion control schemes. Such schemes are simple enough, so as to meet a prime objective for UMTS multicast services, which is scalability to applications with thousands of receivers. It is showed that the degradation of the radio channels in the radio access network causes malfunctions in the legacy TFMCC and PGMCC schemes. The innovation of this work stems from the fact that the original schemes are partly modified and extended in order to support the particularities of the radio access network. It is proposed to introduce minor modifications in the mobile network architecture. Furthermore, complicated operations like statistics and traffic measurements are avoided to be performed on mobile equipment. Last but not the least, the performance of the modified TFMCC and PGMCC schemes is examined and presented in a comparative way. The other aspect that this dissertation examines, is the use of FEC during the mobile multicast communication. A lot of proposals to provide reliability in multicast transmission can be found in the literature. The best-known method that works efficiently for unicast transmission is the Automatic Repeat re-Quest (ARQ). When ARQ is applied in a multicast session, receivers send requests for retransmission of lost packets over a back channel towards the sender. Although ARQ is an effective and reliable tool for point-to-multipoint transmission, when the number of receivers increases, it reveals its limitations. One major limitation is the feedback implosion problem which occurs when too many receivers are transmitting back to the sender. A second problem is that for a given packet loss rate, and a set of receivers experiencing losses, the probability that every single data packet needs to be retransmitted quickly approaches unity as the number of receivers increases. In other words, a high average number of transmissions are needed per packet. In a wireless environment, ARQ has another major disadvantage, due to the requirement for a bidirectional communication link. On most wired networks the feedback channel comes for free, but on wireless networks the transmission of feedback from the receiver can be expensive, either in terms of power consumption, or due to limitations of the communication infrastructure. Forward Error Correction (FEC) is an error control method that can be used to augment or replace other methods for reliable data transmission. The main attribute of FEC schemes is that the sender adds redundant information in the messages transmitted to the receiver. This additional data allow the receiver to reconstruct the source information. Such schemes inevitably add a constant overhead in the transmitted data and are computationally expensive. In multicast protocols however, the use of FEC techniques has very strong motivations. The encoding eliminates the effect of independent losses at different receivers. This makes these schemes able to scale irrespectively of the actual loss pattern at each receiver. Additionally, the dramatic reduction in the packet loss rate largely reduces the need to send feedback to the sender. Therefore a feedback channel may not be necessary or whenever feedback sending is possible, the feedback implosion is avoided. FEC schemes are therefore so simple as to meet a prime objective for mobile multicast services, which is scalability to applications with thousands of receivers. This is the reason why 3GPP recommends the use of application layer FEC for MBMS and, more specifically, adopts the use of Raptor FEC code. In this dissertation, a complete study of the applicability of FEC over the multicast data transmission in mobile networks is presented. The investigation is performed with the aid of a novel scheme that incorporates a probabilistic model for the multicast user distribution in the network and analyzes the multicast data delivery cost. In this framework, the impact of FEC use in MBMS is investigated. It is tried to determine the efficient working point in the trade-off between the FEC code overhead and the retransmission cost. It is examined whether FEC use is beneficial or not, how the optimal FEC code dimensioning varies based on the network conditions, which parameters affect the optimal FEC code selection and how they do it. Additionally, the study focuses on one of the most critical aspects in mobile multicast transmission which is the power control in the radio access network. The proposed scheme incorporates the properties of an evolved mobile network that uses High-Speed Downlink Packet Access (HSDPA) technology for high speed data delivery to mobile terminals. The assessment is not only from power consumption point of view but also from energy consumption and time perspective. It is important that the analysis is compliant with the 3GPP specifications and considers the point-to-point, the point-to-multipoint as well as the hybrid transmission that combines both bearers in the radio access network. The creation of this complete and solid framework is the motivation behind this study. The result is a full view of all the aspects of the FEC application during mobile multicast transmission, some of which have not been considered so far.
Chen, Jiachen. "A Content-Oriented Architecture for Publish/Subscribe Systems." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0022-5F9F-3.
Full text