Academic literature on the topic 'Multicollinearity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicollinearity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multicollinearity"
Tsagris, Michail, and Nikolaos Pandis. "Multicollinearity." American Journal of Orthodontics and Dentofacial Orthopedics 159, no. 5 (May 2021): 695–96. http://dx.doi.org/10.1016/j.ajodo.2021.02.005.
Full textAlin, Aylin. "Multicollinearity." Wiley Interdisciplinary Reviews: Computational Statistics 2, no. 3 (March 8, 2010): 370–74. http://dx.doi.org/10.1002/wics.84.
Full textOhyver, Margaretha, and Herena Pudjihastuti. "Pemodelan Tingkat Penghunian Kamar Hotel di Kendari dengan Transformasi Wavelet Kontinu dan Partial Least Squares." ComTech: Computer, Mathematics and Engineering Applications 5, no. 2 (December 1, 2014): 1178. http://dx.doi.org/10.21512/comtech.v5i2.2435.
Full textHiggins, J., and J. Gruber. "Multicollinearity and Biased Estimation." Statistician 35, no. 3 (1986): 401. http://dx.doi.org/10.2307/2987767.
Full textJurczyk, Tomáš. "Outlier detection under multicollinearity." Journal of Statistical Computation and Simulation 82, no. 2 (February 2012): 261–78. http://dx.doi.org/10.1080/00949655.2011.638634.
Full textKelava, Augustin, Helfried Moosbrugger, Polina Dimitruk, and Karin Schermelleh-Engel. "Multicollinearity and Missing Constraints." Methodology 4, no. 2 (January 2008): 51–66. http://dx.doi.org/10.1027/1614-2241.4.2.51.
Full textÖztürk, Fikri, and Fikri Akdeniz. "Ill-conditioning and multicollinearity." Linear Algebra and its Applications 321, no. 1-3 (December 2000): 295–305. http://dx.doi.org/10.1016/s0024-3795(00)00147-6.
Full textWinship, Christopher, and Bruce Western. "Multicollinearity and Model Misspecification." Sociological Science 3 (2016): 627–49. http://dx.doi.org/10.15195/v3.a27.
Full textDaoud, Jamal I. "Multicollinearity and Regression Analysis." Journal of Physics: Conference Series 949 (December 2017): 012009. http://dx.doi.org/10.1088/1742-6596/949/1/012009.
Full textGILBERT, C. L. "THE DIAGNOSIS OF MULTICOLLINEARITY*." Oxford Bulletin of Economics and Statistics 40, no. 2 (May 1, 2009): 87–91. http://dx.doi.org/10.1111/j.1468-0084.1978.mp40002001.x.
Full textDissertations / Theses on the topic "Multicollinearity"
Clark, Patrick Carl Jr. "The Effects of Multicollinearity in Multilevel Models." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1375956788.
Full textDuxbury, Scott W. "Diagnosing Multicollinearity in Exponential Random Graph Models." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1491393848069144.
Full textGou, Zhenkun. "Canonical correlation analysis and artificial neural networks." Thesis, University of the West of Scotland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269409.
Full textMånsson, Kristofer. "Issues of multicollinearity and conditional heteroscedasticy in time series econometrics." Doctoral thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-31977.
Full textMoineddin, Rahim. "Comments on Mallow's C¦p statistics and multicollinearity effects on predictions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58663.pdf.
Full textBakshi, Girish. "Comparison of ridge regression and neural networks in modeling multicollinear data." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178815205.
Full textAlbarracin, Orlando Yesid Esparza. "Generalized autoregressive and moving average models: control charts, multicollinearity, and a new modified model." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21112017-184544/.
Full textRecentemente, no campo da saúde, gráficos de controle têm sido propostos para monitorar a morbidade ou a mortalidade decorrentes de doenças. Este trabalho está composto por três artigos. Nos dois primeiros artigos, gráficos de controle CUSUM e EWMA foram propostos para monitorar séries temporais de contagens com efeitos sazonais e de tendência usando os modelos Generalized autoregressive and moving average models (GARMA), em vez dos modelos lineares generalizados (GLM), como usualmente são utilizados na prática. Diferentes estatísticas baseadas em transformações, para variávies que seguem uma distribuição Binomial Negativa, foram usadas nestes gráficos de controle. No segundo artigo foram propostas duas novas estatísticas baseadas na razão da função de log-verossimilhança. Diferentes cenários que descrevem perfis de doenças foram considerados para avaliar o efeito da omissão da correlação serial nesses gráficos de controle. Este impacto foi medido em termos do Average Run Lenght (ARL). Notou-se que a negligência da correlação serial induz um aumento de falsos alarmes. Em geral, todas as estatísticas monitoradas apresentaram menores valores de ARL_0 para maiores valores de autocorrelação. No entanto, nenhuma estatística entre as consideradas mostrou ser mais robusta, no sentido de produzir o menor aumento de falsos alarmes nos cenários considerados. No último artigo, foram estudados os modelos GARMA (p, q) com p e q simultaneamente diferentes de zero, uma vez que duas características foram observadas na prática. A primeira é a presença de multicolinearidade, que induz à não-convergência do método de máxima verossimilhança usando mínimos quadrados ponderados reiterados. A segunda é a inclusão dos mesmos termos defasados nos componentes autorregressivos e de médias móveis. Um modelo modificado, GARMA-M, foi apresentado para lidar com a multicolinearidade e melhorar a interpretação dos parâmetros. Em sentido geral, estudos de simulação mostraram que o modelo modificado fornece estimativas mais próximas dos parâmetros e intervalos de confiança com uma cobertura percentual maior do que a obtida nos modelos GARMA. No entanto, algumas restrições no espaço paramétrico são impostas para garantir a estacionariedade do processo. Por último, uma análise de dados reais ilustra o ajuste do modelo GARMA-M para o número de internações diárias de idosos devido a doenças respiratórias de outubro de 2012 a abril de 2015 na cidade de São Paulo, Brasil.
CROPPER, JOHN PHILIP. "TREE-RING RESPONSE FUNCTIONS. AN EVALUATION BY MEANS OF SIMULATIONS (DENDROCHRONOLOGY RIDGE REGRESSION, MULTICOLLINEARITY)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187946.
Full textKuroki, Quispe André Francisco, and Taza Gianella Milagros Soto. "Factores que determinan el comportamiento del volumen de exportación de café peruano con partida 090111 según los años 1980 - 2017." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/628233.
Full textThe present thesis is focused on the factors that explain the export volume of coffee in the period from 1980 to 2017 based on the area of cultivation, average price and coffee yield. The purpose of this research is the development of a statistical model that allows producers in the coffee sector to forecast their export volumes, our methodology is to conduct a quantitative research, with a conclusive non-experimental design and a correlational descriptive scope. The results showed that the average price is not a significant variable that affects the export volume, the cultivated area and the yield are the main factors that the producer must take care of to increase its volume. The yield of coffee is a very sensitive variable and in essence its good management leads to significantly increase the volume of the producer.
Tesis
Gripencrantz, Sarah. "Evaluating the Use of Ridge Regression and Principal Components in Propensity Score Estimators under Multicollinearity." Thesis, Uppsala universitet, Statistiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226924.
Full textBooks on the topic "Multicollinearity"
Pineda, Octavio Luis. La multicolinealidad en econometría: Diagnóstico y corrección del problema. México, D.F: SITESA, Sistemas Técnicos de Edición, 1992.
Find full textMoineddin, Rahim. Comments on Mallows' Cp statistics and multicollinearity effects on predictions. Ottawa: National Library of Canada, 2001.
Find full textKalivas, John H. Mathematical analysis of spectral orthogonality. New York: M. Dekker, 1994.
Find full textDas Problem der Multikollinearität in Regressionsanalysen. Frankfurt am Main: P. Lang, 1994.
Find full textScott Jones, Julie. Learn to Test for Multicollinearity in SPSS With Data From the English Health Survey (Teaching Dataset) (2002). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526485793.
Full textScott Jones, Julie. Learn to Test for Multicollinearity in R With Data From the English Health Survey (Teaching Dataset) (2002). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526498670.
Full textWiesen, Christopher. Learn About Multicollinearity in SPSS With Data From Transparency, Class Bias, and Redistribution: Evidence From the American States Dataset (2018). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526499349.
Full textBabeshko, Lyudmila, Mihail Bich, and Irina Orlova. Econometrics and econometric modeling. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1141216.
Full textBabeshko, Lyudmila, and Irina Orlova. Econometrics and econometric modeling in Excel and R. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1079837.
Full textBook chapters on the topic "Multicollinearity"
Sen, Ashish, and Muni Srivastava. "Multicollinearity." In Springer Texts in Statistics, 218–32. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-4470-7_10.
Full textBarrie Wetherill, G., P. Duncombe, M. Kenward, J. Köllerström, S. R. Paul, and B. J. Vowden. "Multicollinearity." In Regression Analysis with Applications, 82–107. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4105-2_4.
Full textSen, Ashish, and Muni Srivastava. "Multicollinearity." In Springer Texts in Statistics, 218–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-25092-1_10.
Full textCorlett, Wilfred. "Multicollinearity." In The New Palgrave Dictionary of Economics, 9171–72. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_984.
Full textBahovec, Vlasta. "Multicollinearity." In International Encyclopedia of Statistical Science, 869–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_382.
Full textCorlett, Wilfred. "Multicollinearity." In The New Palgrave Dictionary of Economics, 1–2. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_984-1.
Full textAsteriou, Dimitrios, and Stephen G. Hall. "Multicollinearity." In Applied Econometrics, 103–16. London: Macmillan Education UK, 2016. http://dx.doi.org/10.1057/978-1-137-41547-9_5.
Full textKacapyr, Elia. "Multicollinearity." In Essential Econometric Techniques, 129–36. 3rd ed. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003213758-9.
Full textCorlett, Wilfred. "Multicollinearity." In Econometrics, 158–59. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20570-7_22.
Full textHoffmann, John P. "Collinearity and Multicollinearity." In Linear Regression Models, 187–200. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003162230-10.
Full textConference papers on the topic "Multicollinearity"
Castillo, Flor A., and Carlos M. Villa. "Symbolic regression in multicollinearity problems." In the 2005 conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1068009.1068377.
Full textZainodin, H. J., and S. J. Yap. "Overcoming multicollinearity in multiple regression using correlation coefficient." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823947.
Full textZahari, Siti Meriam, Mohammad Said Zainol, and Muhammad Iqbal Al-Banna Bin Ismail. "Weighted ridge M-estimator in the presence of multicollinearity." In 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER). IEEE, 2012. http://dx.doi.org/10.1109/chuser.2012.6504317.
Full textGisin, Vladimir B., Boris A. Putko, and Irina Z. Yarygina. "The Multicollinearity Problem in the Fuzzy Linear Regression Model." In 2022 XXV International Conference on Soft Computing and Measurements (SCM). IEEE, 2022. http://dx.doi.org/10.1109/scm55405.2022.9794871.
Full textMehra, Prabhav, Rajee Gupta, Abhishek Mahajan, and Veeky Baths. "Multicollinearity Analysis for Cuffless Blood Pressure Estimation Regression Algorithms." In ICBSP '19: 2019 4th International Conference on Biomedical Imaging, Signal Processing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3366174.3366188.
Full textSong, Peter, and Chuck Kroll. "The Impact of Multicollinearity on Small Sample Hydrologic Regional Regression." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)389.
Full textWang, Zi-Hao, and Zao-Jian Zou. "Quantifying Multicollinearity in Ship Manoeuvring Modeling by Variance Inflation Factor." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77121.
Full textAraveeporn, Autcha, and Choojai Kuharatanachai. "Comparing Penalized Regression Analysis of Logistic Regression Model with Multicollinearity." In the 2019 2nd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3343485.3343487.
Full textNong, Jifu. "A neural network based on canonical correlation for multicollinearity diagnosis." In 2nd International Conference on Computer and Information Applications (ICCIA 2012). Paris, France: Atlantis Press, 2012. http://dx.doi.org/10.2991/iccia.2012.208.
Full textWang, Rongqiao, Kanghe Jiang, Fulei Jing, Dianyin Hu, and Jun Song. "Dominant Damage Factors Determining for Single Crystal Nickel Superalloys Under Cyclic Loading Based on Principal Component Analysis." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42156.
Full textReports on the topic "Multicollinearity"
Fekedulegn, B. Desta, J. J. Colbert, R. R. ,. Jr Hicks, and Michael E. Schuckers. Coping with Multicollinearity: An Example on Application of Principal Components Regression in Dendroecology. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 2002. http://dx.doi.org/10.2737/ne-rp-721.
Full textGamba-Santamaria, Santiago, Luis Fernando Melo-Velandia, and Camilo Orozco-Vanegas. What can credit vintages tell us about non-performing loans? Banco de la República de Colombia, February 2021. http://dx.doi.org/10.32468/be.1154.
Full text