Contents
Academic literature on the topic 'Multicompartmental nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicompartmental nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multicompartmental nanoparticles"
Rahmani, Sahar, and Joerg Lahann. "Recent progress with multicompartmental nanoparticles." MRS Bulletin 39, no. 3 (March 2014): 251–57. http://dx.doi.org/10.1557/mrs.2014.10.
Full textHe, Xin, Yaqing Qu, Chengqiang Gao, and Wangqing Zhang. "Synthesis of multicompartment nanoparticles of a triblock terpolymer by seeded RAFT polymerization." Polymer Chemistry 6, no. 35 (2015): 6386–93. http://dx.doi.org/10.1039/c5py01041a.
Full textLiu, Jian, Tingting Liu, Jian Pan, Shaomin Liu, and G. Q. (Max) Lu. "Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (June 7, 2018): 389–411. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084225.
Full textChen, Shengli, Xueying Chang, Pingchuan Sun, and Wangqing Zhang. "Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers." Polymer Chemistry 8, no. 36 (2017): 5593–602. http://dx.doi.org/10.1039/c7py01182b.
Full textHe, Xin, Quanlong Li, Pengfei Shi, Yongliang Cui, Shentong Li, and Wangqing Zhang. "A new strategy to prepare thermo-responsive multicompartment nanoparticles constructed with two diblock copolymers." Polym. Chem. 5, no. 24 (2014): 7090–99. http://dx.doi.org/10.1039/c4py01077a.
Full textHuang, Jing, Yakun Guo, Song Gu, Guang Han, Wenfeng Duan, Chengqiang Gao, and Wangqing Zhang. "Multicompartment block copolymer nanoparticles: recent advances and future perspectives." Polymer Chemistry 10, no. 25 (2019): 3426–35. http://dx.doi.org/10.1039/c9py00452a.
Full textPochan, Darrin J., Jiahua Zhu, Ke Zhang, Karen L. Wooley, Caroline Miesch, and Todd Emrick. "Multicompartment and multigeometry nanoparticle assembly." Soft Matter 7, no. 6 (2011): 2500. http://dx.doi.org/10.1039/c0sm00960a.
Full textQu, Yaqing, Fei Huo, Quanlong Li, Xin He, Shentong Li, and Wangqing Zhang. "In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization." Polym. Chem. 5, no. 19 (2014): 5569–77. http://dx.doi.org/10.1039/c4py00510d.
Full textLiu, Tingting, Wei Tian, Yunqing Zhu, Yang Bai, Hongxia Yan, and Jianzhong Du. "How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?" Polym. Chem. 5, no. 17 (2014): 5077–88. http://dx.doi.org/10.1039/c4py00501e.
Full textLunn, David J., John R. Finnegan, and Ian Manners. "Self-assembly of “patchy” nanoparticles: a versatile approach to functional hierarchical materials." Chemical Science 6, no. 7 (2015): 3663–73. http://dx.doi.org/10.1039/c5sc01141h.
Full textDissertations / Theses on the topic "Multicompartmental nanoparticles"
Lu, Yaowei. "Multicompartmental lipid-based Janus nanoparticles : influence of different amphiphilic starting materials on their formation mechanisms and their suitability as drug delivery vehicles." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASQ009.
Full textThe innovative asymmetric lipid-based Janus nanoparticles (JNPs) developed by the Galien Institute can function as novel drug delivery vehicles or diagnostic agent carriers in the field of nanotechnology. To obtain this type of anisotropic particles, different raw materials (phospholipids and short-PEG-based surfactants or amphiphilic cyclodextrin derivatives) and preparation methods (hot high-pressure homogenization or nanoprecipitation) were compared. After that, we tried to optimize these JNPs in terms of knowledge of phospholipid effects and aqueous phase composition. Especially, the relationship between JNP morphology and phospholipid properties was established by considering the packing parameter of phospholipids. By investigating the interaction between phospholipids and short-PEG-based surfactants that constitute JNP, more information can be obtained.We are interested in the ability of classical Janus NPs to co-encapsulate the model drug pairs, and the dual phase release kinetics are quantified and adjusted by mathematic equations. Finally, we aim to explore the acute toxicity and morphological changes upon exposure to classical Janus NPs on the zebrafish larvae. Moreover, the fluorescence microscopy images showed that the biodistribution of nanoparticles is pretty consistent with the nanotoxicity and malformations determined in the larvae. This project verified that the multicompartmental supramolecular organizations are promising candidates for the co-encapsulation of the hydrophilic and hydrophobic active pharmaceutical ingredients