To see the other types of publications on this topic, follow the link: Multicouches à base de cobalt.

Journal articles on the topic 'Multicouches à base de cobalt'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multicouches à base de cobalt.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Belhi, R., S. Jomni, N. Mliki, K. Abdelmoula, M. Ayadi, G. Clugnet, A. Charai, C. Leroux, and G. Nihoul. "Multicouches magnétiques Au/Co/Au : Étude structurale et magnétique." Canadian Journal of Physics 79, no. 7 (August 1, 2001): 1011–20. http://dx.doi.org/10.1139/p01-037.

Full text
Abstract:
Systematic structural studies by transmission electronic microscopy and magnetooptic measures on layered structure Au(111)/Co(00.1)/Au(111), obtained through ultrahigh vacuum vaporization, have clarified some correlations between the crystallographic structure of the cobalt layer and its magnetic properties and allowed us to put forward answers concerning some of these properties. Indeed, these studies provide information concerning the magnetic properties of this magnetic material in such structures. The presence of the gold atoms causes the elementary hexagonal cell of the Co to expand. A simple calculation based on this expansion describes well the anisotropic magnetic behavior of these layers as a function of their thickness. [Journal translation]
APA, Harvard, Vancouver, ISO, and other styles
2

Bennegueouche, J., J. P. Damiano, and A. Papiernik. "Antennes imprimées multicouches : choix des fonctions de base dans la méthode des moments." Journal de Physique III 3, no. 3 (March 1993): 553–62. http://dx.doi.org/10.1051/jp3:1993148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klarstrom, D. L. "Wrought cobalt- base superalloys." Journal of Materials Engineering and Performance 2, no. 4 (August 1993): 523–30. http://dx.doi.org/10.1007/bf02661736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lamnawar, K., and A. Maazouz. "Rhéologie aux interfaces des matériaux multicouches à base de polymères fonctionnels: application au procédé rotomoulage." Matériaux & Techniques 94, no. 5 (2006): 305–21. http://dx.doi.org/10.1051/mattech:2007006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DESGARDIN, G., M. HALMI, J. M. HAUSSONNE, and B. RAVEAU. "NOUVEAUX MATERIAUX DIELECTRIQUES A BASE DE PEROVSKITES AU PLOMB POUR CONDENSATEURS MULTICOUCHES DE TYPE II." Le Journal de Physique Colloques 47, no. C1 (February 1986): C1–889—C1–893. http://dx.doi.org/10.1051/jphyscol:19861137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suzuki, Akane, Haruyuki Inui, and Tresa M. Pollock. "L12-Strengthened Cobalt-Base Superalloys." Annual Review of Materials Research 45, no. 1 (July 2015): 345–68. http://dx.doi.org/10.1146/annurev-matsci-070214-021043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sato, J. "Cobalt-Base High-Temperature Alloys." Science 312, no. 5770 (April 7, 2006): 90–91. http://dx.doi.org/10.1126/science.1121738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vlasov, A. S., N. S. Yugai, V. M. Loginov, T. L. Neklyudova, and N. Yu Yakubovskaya. "Spinel-base cobalt-containing paint." Glass and Ceramics 53, no. 3 (March 1996): 72–75. http://dx.doi.org/10.1007/bf01061490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olazabal, Claudia A., Francois P. Gabbai, Alan H. Cowley, Carl J. Carrano, Ladd M. Mokry, and Marcus R. Bond. "Intramolecular Base Stabilization of Cobalt-Gallium and Cobalt-Indium Compounds." Organometallics 13, no. 2 (February 1994): 421–23. http://dx.doi.org/10.1021/om00014a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Rosset, William S., and Jonathan S. Montgomery. "Cobalt-base alloy gun barrel study." Wear 316, no. 1-2 (August 2014): 119–23. http://dx.doi.org/10.1016/j.wear.2014.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Terada, Yoshihiro, Kenji Ohkubo, Tetsuo Mohri, and Tomoo Suzuki. "Thermal conductivity of cobalt-base alloys." Metallurgical and Materials Transactions A 34, no. 9 (September 2003): 2026–28. http://dx.doi.org/10.1007/s11661-003-0168-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rao, B. "Spectrophotometric determination of cobalt in iron-, cobalt- and nickel-base alloys." Talanta 34, no. 3 (March 1987): 367–68. http://dx.doi.org/10.1016/0039-9140(87)80049-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

de Souza Royse, Fernanda de Souza, Ivan Napoleão Bastos, and Hector Reynaldo Meneses Costa. "Cobalt-Base Superalloy Coating Using GTAW Process." Materials Science Forum 758 (June 2013): 41–47. http://dx.doi.org/10.4028/www.scientific.net/msf.758.41.

Full text
Abstract:
In harsh operational conditions, the low-alloy steels need to be protected from the environment. Thus, against corrosion and wear, an ordinary choice is metallic cladding. In this sense, the present study aimed to evaluate the properties of cobalt base superalloy coating deposited by gas tungsten welding process (GTAW) on steel SAE 4140. A circumferential weld was chosen due to its critical restraint. Four coating conditions were studied varying the welding currents. A microstructural evaluation was done using optical and scanning electron microscopy. The physical properties of coatings were additionally evaluated by microhardness measurement and dilution quantification. The results obtained indicated, for all conditions, a uniformity of layers. However, the deposited weld characteristics are strongly dependent on welding parameters. For the welding parameters studied, the maximum dilution of 60.8% was observed in coatings with austenitic and dendrite microstructures welded with 110 A current. Moreover, the metallographic analysis and microhardness tests showed, for some cases, the presence of partially diluted zone, a microstructural layer in the transition region of base metal and coating. The welding performed with current of 90 A showed the best combination of microhardness and dilution aspects, without defects in coating.
APA, Harvard, Vancouver, ISO, and other styles
14

Jyoko, Yukimi, and Shiro Haruyama. "Induced Codeposition of Amorphous Cobalt-Base Alloys." Journal of the Japan Institute of Metals 53, no. 1 (1989): 100–105. http://dx.doi.org/10.2320/jinstmet1952.53.1_100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Marti, A. "Cobalt-base alloys used in bone surgery." Injury 31 (December 2000): D18—D21. http://dx.doi.org/10.1016/s0020-1383(00)80018-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Honda, Tadashi, Toshio Sakuma, and Uichi Iwata. "Erosion Properties of the Cobalt base Alloys." Proceedings of the 1992 Annual Meeting of JSME/MMD 2003 (2003): 721–22. http://dx.doi.org/10.1299/jsmezairiki.2003.0_721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Brizitskii, V. M., V. G. Grebenkina, D. E. Dyshel', L. I. Panov, K. A. Brizitskaya, and M. D. Smolin. "Electrical properties of cobalt molybdate-base composites." Soviet Powder Metallurgy and Metal Ceramics 28, no. 6 (June 1989): 472–75. http://dx.doi.org/10.1007/bf00795304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mohapatra, M., V. Chakravortty, and K. C. Dash. "Cobalt(II) and cobalt(III) complexes with hexadentate dioxime schiff base ligands." Polyhedron 8, no. 12 (January 1989): 1509–15. http://dx.doi.org/10.1016/s0277-5387(00)80327-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Krishnamurthy, K. S., P. Sivaraman, R. N. Palani, and R. Deivasigamani. "Hard Facing with Cobalt Base Alloy- Stellite--1." Indian Welding Journal 30, no. 3 (July 1, 1997): 20. http://dx.doi.org/10.22486/iwj.v30i3.182694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Chao, He Jiang, Jianxin Dong, Zhihao Yao, and Yongji Niu. "Cold deformation mechanism of cobalt-base superalloy GH5605." Materials Letters 267 (May 2020): 127533. http://dx.doi.org/10.1016/j.matlet.2020.127533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Peter, Ildiko, Mario Rosso, Dan Ioan, Brandusa Ghiban, and Christian Castella. "Design and Microstructure of Innovative Cobalt Base Alloy." Materials Science Forum 790-791 (May 2014): 235–40. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.235.

Full text
Abstract:
Design and characterization of modified Cobalt base alloy for biological applications have been studied and compared. In particular, modification has been realized by addition of Mo, Ti and Zr to better fit the requirements for dental applications. On the samples morphological and surface analysis including residual stress determination have been considered. As a result of this study, a positive effect of Ti addition has been demonstrated. Contrarily, a simultaneous addition of Ti and Zr does not promote any enhancement as microstructure and properties concern.
APA, Harvard, Vancouver, ISO, and other styles
22

Pu, S., J. Zhang, Y. F. Shen, and L. H. Lou. "Recrystallization in a directionally solidified cobalt-base superalloy." Materials Science and Engineering: A 480, no. 1-2 (May 2008): 428–33. http://dx.doi.org/10.1016/j.msea.2007.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Dian, and A. E. Martell. "Dioxygen affinities of synthetic cobalt Schiff base complexes." Inorganic Chemistry 26, no. 7 (April 1987): 1026–30. http://dx.doi.org/10.1021/ic00254a013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kinikoğlu, Nihat G. "Effect of lanthanum on some cobalt-base eutectics." Journal of Materials Science Letters 7, no. 11 (November 1988): 1184–86. http://dx.doi.org/10.1007/bf00722332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Esaki, H., K. Ameyama, and M. Tokizane. "Warm pressing of cobalt base amorphous alloy powders." Materials Science and Technology 5, no. 4 (April 1989): 369–76. http://dx.doi.org/10.1179/mst.1989.5.4.369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

El Ouassouli, A., S. Ezzemouri, A. Ezzamarty, M. Lakhdar, and J. Leglise. "Catalyseurs sulfures à base de cobalt et d'hydroxyapatite." Journal de Chimie Physique et de Physico-Chimie Biologique 96, no. 7 (July 1999): 1212–25. http://dx.doi.org/10.1051/jcp:1999208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

DiRisio, Ryan J., Jessica E. Armstrong, Mariah A. Frank, William R. Lake, and William R. McNamara. "Cobalt Schiff-base complexes for electrocatalytic hydrogen generation." Dalton Transactions 46, no. 31 (2017): 10418–25. http://dx.doi.org/10.1039/c7dt01750b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yang, F. M., X. F. Sun, W. Zhang, Y. P. Kang, H. R. Guan, and Z. Q. Hu. "Secondary M6C precipitation in K40S cobalt-base alloy." Materials Letters 49, no. 3-4 (June 2001): 160–64. http://dx.doi.org/10.1016/s0167-577x(00)00361-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

BASOLO, F. "ChemInform Abstract: Base Hydrolysis of Cobalt(III) Ammines." ChemInform 28, no. 25 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199725255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Waldner, P., E. Königsberger, and H. Gamsjäger. "Computer-assisted optimization of cobalt-base alloy compositions." Journal of Alloys and Compounds 220, no. 1-2 (April 1995): 148–51. http://dx.doi.org/10.1016/0925-8388(94)06016-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

NISHINAGA, Akira, Shohei MORIKAWA, Katsumi YOSHIDA, and Teruo MATSUURA. "Oxygenation of nitroalkanes with cobalt schiff base complexes." NIPPON KAGAKU KAISHI, no. 4 (1988): 487–94. http://dx.doi.org/10.1246/nikkashi.1988.487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Costa, Giacomo, Claudio Tavagnacco, Anna Puxeddu, Gabriele Balducci, and Rakesh Kumar. "Electrochemistry of cobalt mixed Schiff base/oxime chelates." Journal of Organometallic Chemistry 330, no. 1-2 (August 1987): 185–99. http://dx.doi.org/10.1016/0022-328x(87)80287-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sahay, S. K., and B. Goswami. "Recent Developments in Co-Base Alloys." Solid State Phenomena 150 (January 2009): 197–219. http://dx.doi.org/10.4028/www.scientific.net/ssp.150.197.

Full text
Abstract:
Cobalt base alloys are being designed and developed to produce the best possible combinations of high temperature properties. Existence of martensite forms consisting of various intermetallic compounds has been described along with the variables associated with fcc-hcp transition at respective conditions of formation. Achievements of cobalt base alloys have been primarily due to various thermodynamic and kinetic parameters for most suitable combinations of alloying. The phase transformations in this review include the study of defect structure, martensite transformation, order-disorder kinetics, and recrystallization and grain growth mechanisms. The improvements in mechanical properties stem from the contribution of additional alloying elements to discontinuous precipitation, diffusion mechanism at grain boundaries and changes in compressive strength, yield strength, elongation and brittleness. L12-compound in cobalt base alloys possesses an important identity, which changes the characteristics of usable compositions.
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Dian, Arthur E. Martell, and Yizhen Sun. "New synthetic cobalt Schiff base complexes as oxygen carriers." Inorganic Chemistry 28, no. 13 (June 1989): 2647–52. http://dx.doi.org/10.1021/ic00312a029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zheng, Xiao Hui, Gui Min Liu, and Jian Hua Du. "Strengthen Mechanism of Hard-Drawn Cobalt-Base Elastic Alloy." Advanced Materials Research 399-401 (November 2011): 2255–60. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.2255.

Full text
Abstract:
The microstructure and tensile properties of cobalt-base elastic alloy Co40NiCrMo are investigated. The results show that, fcc structure is the crystal structure of Co40NiCrMo alloy after solution treatment and hard-draw. The slipping and twinning are the modes of plastic deformation during the hard-draw. Twinning is the main deformation mode of Co40NiCrMo alloy after hard-draw when more deformation is made.
APA, Harvard, Vancouver, ISO, and other styles
36

Bertini, Ivano, Andrea Dei, Claudio Luchinat, and Roberto Monnanni. "Acid-base properties of cobalt(II)-substituted carbonic anhydrases." Inorganic Chemistry 24, no. 3 (January 1985): 301–3. http://dx.doi.org/10.1021/ic00197a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cockeram, B. V. "Development of wear-resistant coatings for cobalt–base alloys." Surface and Coatings Technology 120-121 (November 1999): 509–18. http://dx.doi.org/10.1016/s0257-8972(99)00492-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nishinaga, Akira, Toshiyuki Kondo, and Teruo Matsuura. "OXYGENATION OF COBALT(II) SCHIFF BASE COMPLEXES IN ALCOHOLS." Chemistry Letters 14, no. 7 (July 5, 1985): 905–8. http://dx.doi.org/10.1246/cl.1985.905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Böttcher, Arnd, Toshihiko Takeuchi, Kenneth I. Hardcastle, Thomas J. Meade, Harry B. Gray, Dory Cwikel, Moshe Kapon, and Zvi Dori. "Spectroscopy and Electrochemistry of Cobalt(III) Schiff Base Complexes." Inorganic Chemistry 36, no. 12 (June 1997): 2498–504. http://dx.doi.org/10.1021/ic961146v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kolb, Markus, Christopher H. Zenk, Anna Kirzinger, Ivan Povstugar, Dierk Raabe, Steffen Neumeier, and Mathias Göken. "Influence of rhenium on γ′-strengthened cobalt-base superalloys." Journal of Materials Research 32, no. 13 (July 2017): 2551–59. http://dx.doi.org/10.1557/jmr.2017.242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

El-Dahshan, M. E., and M. I. Hazzaa. "The Oxidation of cobalt-tantalum base alloys containing carbon." Materials and Corrosion/Werkstoffe und Korrosion 38, no. 8 (August 1987): 422–31. http://dx.doi.org/10.1002/maco.19870380805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Thalal, A., H. Ahamdane, M. A. El Idrissi Raghni, and F. Bensamka. "Comparative study between synthesized Zn2-xCoxSiO4and cobalt-base pigments." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c390. http://dx.doi.org/10.1107/s0108767305083480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zheng, Lu, Yongbo, and Zhuangqi. "CYCLIC DEFORMATION OF A DIRECTIONALLY SOLIDIFIED COBALT-BASE SUPERALLOY." Fatigue Fracture of Engineering Materials and Structures 21, no. 12 (December 1998): 1589–94. http://dx.doi.org/10.1046/j.1460-2695.1998.00118.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, D. S., R. P. Liu, Y. H. Wei, Y. Qiu, P. Pan, K. Zhu, and W. L. Gao. "Comparative behaviour of cobalt and iron base hardfacing alloys." Surface Engineering 28, no. 5 (June 2012): 338–44. http://dx.doi.org/10.1179/1743294411y.0000000090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ert�rk, T., and A. S. Argon. "Plasticity by martensite transformations in cobalt base metallic glasses?" Journal of Materials Science 22, no. 4 (April 1987): 1365–73. http://dx.doi.org/10.1007/bf01233135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gui, Weimin, Xiaotian Zhang, Hongyu Zhang, Xiaofeng Sun, and Qi Zheng. "Melting of primary carbides in a cobalt-base superalloy." Journal of Alloys and Compounds 787 (May 2019): 152–57. http://dx.doi.org/10.1016/j.jallcom.2019.02.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meher, S., S. Nag, J. Tiley, A. Goel, and R. Banerjee. "Coarsening kinetics of γ′ precipitates in cobalt-base alloys." Acta Materialia 61, no. 11 (June 2013): 4266–76. http://dx.doi.org/10.1016/j.actamat.2013.03.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, H. J., I. K. Kang, and J. S. Chun. "Glass forming ranges of cobalt-base thin film alloys." Journal of Materials Science 23, no. 11 (November 1988): 4165–70. http://dx.doi.org/10.1007/bf01106852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nishinaga, Akira, Naoki Numada, and Kazushige Maruyama. "Substrate anion cobalt(III) complex intermediate in model quercetinase reaction using cobalt schiff base complex." Tetrahedron Letters 30, no. 17 (January 1989): 2257–58. http://dx.doi.org/10.1016/s0040-4039(00)99663-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

KHOZA, Sandile H., Siphamandla C. MASIKANE, Sixberth MLOWE, Itegbeyogene P. EZEKIEL, Thomas MOYO, and Neerish REVAPRASADU. "Thermolytic synthesis of cobalt and cobalt sulfide nanoparticles using Cobalt(II) N ^ O Schiff base complexes as single molecular precursors." TURKISH JOURNAL OF CHEMISTRY 42, no. 5 (October 11, 2018): 1224–37. http://dx.doi.org/10.3906/kim-1712-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography