Academic literature on the topic 'Multicriteria Optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicriteria Optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multicriteria Optimization"
Craft, David, Dualta McQuaid, Jeremiah Wala, Wei Chen, Ehsan Salari, and Thomas Bortfeld. "Multicriteria VMAT optimization." Medical Physics 39, no. 2 (January 12, 2012): 686–96. http://dx.doi.org/10.1118/1.3675601.
Full textBeaulieu, Luc, Hania Al-Hallaq, Benjamin S. Rosen, and David J. Carlson. "Multicriteria Optimization in Brachytherapy." International Journal of Radiation Oncology*Biology*Physics 114, no. 2 (October 2022): 177–80. http://dx.doi.org/10.1016/j.ijrobp.2022.05.022.
Full textMurdoch, Dr Tim. "Multicriteria optimization and engineering." Materials & Design 16, no. 2 (January 1995): 120–21. http://dx.doi.org/10.1016/0261-3069(95)90021-7.
Full textLupşa, Liana, and Nicolae Popovici. "Generalized unimodal multicriteria optimization." Journal of Numerical Analysis and Approximation Theory 35, no. 1 (February 1, 2006): 65–70. http://dx.doi.org/10.33993/jnaat351-1012.
Full textStatnikov, Roman, Josef Matusov, Kirill Pyankov, and Alexander Statnikov. "Multicriteria Optimization of Cellular Networks." Open Journal of Optimization 02, no. 03 (2013): 53–60. http://dx.doi.org/10.4236/ojop.2013.23008.
Full textPopovici *, Nicolae. "Pareto reducible multicriteria optimization problems." Optimization 54, no. 3 (June 2005): 253–63. http://dx.doi.org/10.1080/02331930500096213.
Full textLa Torre, Davide, and Nicolae Popovici. "Arcwise cone-quasiconvex multicriteria optimization." Operations Research Letters 38, no. 2 (March 2010): 143–46. http://dx.doi.org/10.1016/j.orl.2009.11.003.
Full textChen, Huixiao, David L. Craft, and David P. Gierga. "Multicriteria optimization informed VMAT planning." Medical Dosimetry 39, no. 1 (2014): 64–73. http://dx.doi.org/10.1016/j.meddos.2013.10.001.
Full textFliege, J., and L. N. Vicente. "Multicriteria Approach to Bilevel Optimization." Journal of Optimization Theory and Applications 131, no. 2 (November 8, 2006): 209–25. http://dx.doi.org/10.1007/s10957-006-9136-2.
Full textFrangopol, Dan M. "Multicriteria reliability-based structural optimization." Structural Safety 3, no. 1 (October 1985): 23–28. http://dx.doi.org/10.1016/0167-4730(85)90004-9.
Full textDissertations / Theses on the topic "Multicriteria Optimization"
Dächert, Kerstin [Verfasser]. "Adaptive Parametric Scalarizations in Multicriteria Optimization / Kerstin Dächert." Wuppertal : Universitätsbibliothek Wuppertal, 2014. http://d-nb.info/1054221308/34.
Full textFilomeno, Coelho Rajan. "Multicriteria optimization with expert rules for mechanical design." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211184.
Full textConsequently, to solve these problems, the most wide-spread meta-heuristic methods are evolutionary algorithms (EAs), which work as follows: the best individuals among an initial population of randomly generated potential solutions are favoured and com-bined (by specific operators like crossover and mutation) in order to create potentially better individuals at the next generation. The creation of new generations is repeated till the convergence is reached. The ability of EAs to explore widely the design space is useful to solve single-objective unconstrained optimization problems, because it gener-ally prevents from getting trapped into a local optimum, but it is also well known that they do not perform very efficiently in the presence of constraints. Furthermore, in many industrial applications, multiple objectives are pursued together.
Therefore, to take into account the constrained and multicriteria aspects of optimization problems in EAs, a new method called PAMUC (Preferences Applied to MUltiobjectiv-ity and Constraints) has been proposed in this dissertation. First the user has to assign weights to the m objectives. Then, an additional objective function is built by linearly aggregating the normalized constraints. Finally, a multicriteria decision aid method, PROMETHEE II, is used in order to rank the individuals of the population following the m+1 objectives.
PAMUC has been validated on standard multiobjective test cases, as well as on the pa-rametrical optimization of the purge valve and the feed valve of the Vinci engine, both designed by Techspace Aero for launcher Ariane 5.
\
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Zhang, Tianfang. "Machine learning multicriteria optimization in radiation therapy treatment planning." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257509.
Full textInom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
Sánchez, Corrales Helem Sabina. "Multi-objective optimization and multicriteria design of PI /PID controllers." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/393990.
Full textNowadays, the proportional integral and proportional integral derivatives are the most used control algorithm in the industry. Moreover, the fractional controllers have received attention recently for both, the research community and from the industrial point of view. Owing to this, in this thesis some of the scenarios involve the tuning of these controllers by using the Multiobjective Optimization Design procedure. This procedure focuses on providing reasonable trade-off among the conflictive objectives and brings the designer the possibility to appreciate the comparison of the design objectives. This thesis is divided in three parts. The first part, presented the fundamentals of the control system showing and discussing the different trade-offs between performance/robustness and servo/regulation operation modes. On the other hand a background on multi-objective optimization has been provided. The second part, introduces the Nash solution as a multi-criteria decision making technique, to select a point from the Pareto front that represent the best compromise among the design objective. This solution provides a semi-automatic selection from the Pareto front approximation and offers a good trade-off between the goal objectives. Hereafter, a Multi-stage approach for the multi-objective optimization process is presented. This approach involves two algorithms: a deterministic and evolutionary algorithm. In which both algorithms complement each other in despite of their drawbacks and improve the results of the overall optimization in terms of convergence and accuracy. Further, the introduction of reliability based objective into the multi-objective problem is carried out, to measure the performance degradation. It is worthwhile to mention that, due to the existence of uncertainties in real-world designing and manufacturing having this design objective will give another perspective to the designer. In order to validate the approach, two different case studies has been considered, the Boiler control problem for controller tuning and as second case, a non-linear Peltier Cell. Finally, the third part of this thesis, the contributions on controller tuning have been presented. First, a set of tuning rules based on the NS for a proportional-integral (PI) controller have been devised, where the robustness/performance trade-off have been considered. Moreover, as a second case it is presented a tuning for proportional-integral-derivative controller where the trade-off of the performance/robustness and servo/regulation operation mode has been considered. Moreover, the fractional-order-proportional-integral-derivative controller is tuned by using the Multi-stage approach for the MOO process.
Bokrantz, Rasmus. "Multicriteria optimization for managing tradeoffs in radiation therapy treatment planning." Doctoral thesis, KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122663.
Full textEn viktig aspekt av planering av strålterapibehandlingar är avvägningar mellan behandlingsmål vilka står i konflikt med varandra. Exempel på sådana avvägningar är mellan tumörkontroll och dos till omkringliggande frisk vävnad, mellan behandlingstid och doskvalitet, och mellan nominell plankvalitet och robusthet med avseende på geometriska fel. Denna avhandling syftar till att utveckla metoder som kan underlätta beslutsfattande kring motstridiga behandlingsmål. Primärt studeras en metod för flermålsoptimering där behandlingsplanen väljs genom kontinuerlig interpolation över ett representativt urval av förberäknade alternativ. De förberäknade behandlingsplanerna utgör en delmängd av de Paretooptimala planerna, det vill säga de planer sådana att en förbättring enligt ett kriterium inte kan ske annat än genom en försämring enligt ett annat. Beräkning av en approximativ representation av mängden av Paretooptimala planer studeras först med avseende på fluensoptimering för intensitetsmodulerad strålterapi. Felet för den approximativa representationen minimeras genom att innesluta mängden av Paretooptimala planer mellan inre och yttre approximationer. Dessa approximationer förfinas iterativt genom att varje ny plan genereras där avståndet mellan approximationerna för tillfället är som störst. En teknik för att beräkna det maximala avståndet mellan approximationerna föreslås vilken är flera storleksordningar snabbare än den bästa tidigare kända metoden. En generalisering till distribuerade beräkningsmiljöer föreslås även. Approximation av mängden av Paretooptimala planer studeras även för direkt maskinparameteroptimering, som används för att beräkna representationer där varje interpolerad behandlingsplan är direkt levererbar. Det faktum att en ändlig representation av mängden av Paretooptimala lösningar har ett approximationsfel till Paretooptimalitet hanteras via en metod där en interpolerad behandlingsplan projiceras på Paretomängden. Projektioner studeras även under bivillkor som förhindrar att den interpolerade planens dos-volym histogram kan försämras. Flermålsoptimering utökas till planering av rotationsterapi och intensitetsmodulerad protonterapi. Protonplaner som är robusta mot geometriska fel beräknas genom optimering med avseende på det värsta möjliga utfallet av de föreliggande osäkerheterna. Flermålsoptimering utökas även teoretiskt till att innefatta denna formulering. Nyttan av värsta fallet-optimering jämfört med tidigare mer konservativa metoder som även skyddar mot osäkerheter som inte kan realiseras i praktiken demonstreras experimentellt.
QC 20130527
Schott, Jason R. (Jason Ramon). "Fault tolerant design using single and multicriteria genetic algorithm optimization." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11582.
Full textArreola-Risa, Jesus S. "Multicriteria optimization for design of multivariate control charts for manufacturing processes." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27997.
Full textHeiserer, Daniel F. [Verfasser]. "Fast Reanalysis for Large Scale Multicriteria Structural Optimization / Daniel F Heiserer." Aachen : Shaker, 2005. http://d-nb.info/1186576960/34.
Full textSarma, Kamal C. "Fuzzy discrete multicriteria cost optimization of steel structures using genetic algorithm /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488205318509081.
Full textBuonanno, Michael Alexander. "A Method for Aircraft Concept Exploration using Multicriteria Interactive Genetic Algorithms." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7571.
Full textBooks on the topic "Multicriteria Optimization"
Ehrgott, Matthias. Multicriteria Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22199-0.
Full textEschenauer, Hans, Juhani Koski, and Andrzej Osyczka, eds. Multicriteria Design Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5.
Full textStatnikov, Roman B., and Joseph B. Matusov. Multicriteria Optimization and Engineering. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2089-4.
Full text1948-, Matusov Joseph B., ed. Multicriteria optimization and engineering. New York: Chapman & Hall, 1995.
Find full textStatnikov, Roman B. Multicriteria Optimization and Engineering. Boston, MA: Springer US, 1995.
Find full textStatnikov, Roman B. Multicriteria Design: Optimization and Identification. Dordrecht: Springer Netherlands, 1999.
Find full textB, Statnikov R. Multicriteria design: Optimization and identification. Dordrecht: Kluwer Academic, 1999.
Find full textHans, Eschenauer, Koski Juhani 1947-, and Osyczka Andrzej, eds. Multicriteria design optimization: Procedures and applications. Berlin: Springer-Verlag, 1990.
Find full textEschenauer, Hans. Multicriteria Design Optimization: Procedures and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
Find full textBook chapters on the topic "Multicriteria Optimization"
Spillers, William R., and Keith M. MacBain. "Multicriteria Optimization." In Structural Optimization, 175–78. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95865-1_8.
Full textStatnikov, Roman B. "Multicriteria Identification." In Applied Optimization, 143–72. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2363-3_6.
Full textXidonas, Panos, George Mavrotas, Theodore Krintas, John Psarras, and Constantin Zopounidis. "Portfolio Optimization." In Multicriteria Portfolio Management, 57–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3670-6_4.
Full textKoski, Juhani. "Multicriteria Truss Optimization." In Multicriteria Optimization in Engineering and in the Sciences, 263–307. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-3734-6_9.
Full textEschenauer, H. A., J. Koski, and A. Osyczka. "Multicriteria Optimization — Fundamentals and Motivation." In Multicriteria Design Optimization, 1–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_1.
Full textEschenauer, H., W. Fuchs, P. U. Post, S. Adali, K. J. Duffy, K. H. Stenvers, J. Koski, and R. Silvennoinen. "Structures Made of Advanced Materials." In Multicriteria Design Optimization, 397–463. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_10.
Full textBremicker, M., H. A. Eschenauer, and P. U. Post. "Optimization Procedure SAPOP — A General Tool for Multicriteria Structural Designs." In Multicriteria Design Optimization, 35–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_2.
Full textEschenauer, H. A., A. Osyczka, and E. Schäfer. "Interactive Multicriteria Optimization in Design Process." In Multicriteria Design Optimization, 71–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_3.
Full textBalachandran, M., and J. S. Gero. "Knowledge Engineering and Multicriteria Optimization." In Multicriteria Design Optimization, 115–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_4.
Full textKoski, J., A. Osyczka, J. Zajac, F. Pfeiffer, H. H. Müller-Slany, D. H. van Campen, R. Nagtegaal, and A. J. G. Schoofs. "Mechanisms and Dynamic Systems." In Multicriteria Design Optimization, 151–228. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5_5.
Full textConference papers on the topic "Multicriteria Optimization"
Astapov, Victor, and Jelena Shuvalova. "Factors influencing multicriteria optimization process." In 2015 16th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2015. http://dx.doi.org/10.1109/epe.2015.7161190.
Full textBucoń, Robert, and Michał Tomczak. "MULTICRITERIA OPTIMIZATION OF BUILDING RENOVATION." In 24th International Academic Conference, Barcelona. International Institute of Social and Economic Sciences, 2016. http://dx.doi.org/10.20472/iac.2016.024.013.
Full textBobak, Martin, Ladislav Hluchy, and Viet Tran. "Methodology for intercloud multicriteria optimization." In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7382217.
Full textJoswig, Michael, and Georg Loho. "Monomial tropical cones for multicriteria optimization." In PROCEEDINGS LEGO – 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP. Author(s), 2019. http://dx.doi.org/10.1063/1.5089992.
Full textVittal, Sameer, and Prabhat Hajela. "Approaches to Reliability Based Multicriteria Optimization." In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5583.
Full textPavlichenko, Dmytro, and Sven Behnke. "Efficient stochastic multicriteria arm trajectory optimization." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206256.
Full textNelson, Sigurd A., Matthew B. Parkinson, and Panos Y. Papalambros. "Multicriteria Optimization in Product Platform Design." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8676.
Full textBezruk, Valery, and Dariy Rybalko. "Multicriteria Optimization in Telecommunication Networks Planning." In 2007 17th International Crimean Conference - Microwave & Telecommunication Technology. IEEE, 2007. http://dx.doi.org/10.1109/crmico.2007.4368739.
Full textKoski, Juhani. "Multicriteria Optimization in Structural Design: State of the Art." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0353.
Full textEvtushenko, Yuri, and Mikhail Posypkin. "A deterministic method for constrained multicriteria optimization." In 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, 2015. http://dx.doi.org/10.1109/icmsao.2015.7152218.
Full textReports on the topic "Multicriteria Optimization"
Stepanović, Milica, Dragoljub Bajić, and Dušan Polomši. Multicriteria Analysis and Optimization of Groundwater Control Systems with Variable Values of Criterion over Predefined Time Points. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2021. http://dx.doi.org/10.7546/crabs.2021.08.09.
Full text