Academic literature on the topic 'Multiferroic Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiferroic Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiferroic Materials"
Grotel, Jakub. "MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 11, no. 1 (March 31, 2021): 10–14. http://dx.doi.org/10.35784/iapgos.2583.
Full textZhao, Shifeng. "Advances in Multiferroic Nanomaterials Assembled with Clusters." Journal of Nanomaterials 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/101528.
Full textGilioli, Edmondo, and Lars Ehm. "High pressure and multiferroics materials: a happy marriage." IUCrJ 1, no. 6 (October 31, 2014): 590–603. http://dx.doi.org/10.1107/s2052252514020569.
Full textZhao, By Weijie. "Pas de deux of electricity and magnetism: an interview with Sang-Wook Cheong." National Science Review 6, no. 4 (January 31, 2019): 703–6. http://dx.doi.org/10.1093/nsr/nwz004.
Full textZhao, Li, Maria Teresa Fernández-Díaz, Liu Hao Tjeng, and Alexander C. Komarek. "Oxyhalides: A new class of high-TC multiferroic materials." Science Advances 2, no. 5 (May 2016): e1600353. http://dx.doi.org/10.1126/sciadv.1600353.
Full textShukla, Dinesh, Nhalil E. Rajeevan, and Ravi Kumar. "Combining Magnetism and Ferroelectricity towards Multiferroicity." Solid State Phenomena 189 (June 2012): 15–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.189.15.
Full textDONG, SHUAI, and JUN-MING LIU. "RECENT PROGRESS OF MULTIFERROIC PEROVSKITE MANGANITES." Modern Physics Letters B 26, no. 09 (April 8, 2012): 1230004. http://dx.doi.org/10.1142/s0217984912300049.
Full textGareeva, Z. V., A. K. Zvezdin, and T. T. Gareev. "Ferroelectric and Magnetic Domain Walls in High Temperature Multiferroic Films and Heterostructures." Materials Science Forum 845 (March 2016): 7–12. http://dx.doi.org/10.4028/www.scientific.net/msf.845.7.
Full textRoy, Amritendu, Rajeev Gupta, and Ashish Garg. "Multiferroic Memories." Advances in Condensed Matter Physics 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/926290.
Full textLiu, Sheng, Feng Xiang, Yulan Cheng, Yajun Luo, and Jing Sun. "Multiferroic and Magnetodielectric Effects in Multiferroic Pr2FeAlO6 Double Perovskite." Nanomaterials 12, no. 17 (August 30, 2022): 3011. http://dx.doi.org/10.3390/nano12173011.
Full textDissertations / Theses on the topic "Multiferroic Materials"
Figueiras, Fábio Gabriel Nazário. "Study of multiferroic materials." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/4271.
Full textThe present PhD work aims the research and development of materials that exhibit multiferroic properties, in particular having a significant interaction between ferromagnetism and ferroelectricity; either directly within an intrinsic single phase or by combining extrinsic materials, achieving the coupling of properties through mechanic phenomena of the respective magnetostriction and piezoelectricity. These hybrid properties will allow the cross modification of magnetic and electric polarization states by the application of cross external magnetic and/or electric fields, giving way to a vast area for scientific investigation and potential technological applications in a new generation of electronic devices, such as computer memories, signal processing, transducers, sensors, etc. Initial experimental work consisted in chemical synthesis of nano powders oxides by urea pyrolysis method: A series of ceramic bulk composites with potential multiferroic properties comprised: of LuMnO3 with La0.7Sr0.3MnO3 and BaTiO3 with La0.7Ba0.3MnO3; and a series based on the intrinsic multiferroic LuMn1-zO3 phase modified with of Manganese vacancies. The acquisition of a new magnetron RF sputtering deposition system, in the Physics Department of Aveiro University, contributed to the proposal of an analogous experimental study in multiferroic thin films and multilayer samples. Besides the operational debut of this equipment several technical upgrades were completed like: the design and construction of the heater electrical contacts; specific shutters and supports for the magnetrons and for the substrate holder and; the addition of mass flow controllers, which allowed the introduction of N2 or O2 active atmosphere in the chamber; and the addition of a second RF generator, enabling co-deposition of different targets. Base study of the deposition conditions and resulting thin films characteristics in different substrates was made from an extensive list of targets. Particular attention was given to thin film deposition of magnetic phases La1-xSrxMnO3, La1-xBaxMnO3 and Ni2+x-yMn1-xGa1+y alloy, from the respective targets: La0.7Sr0.3MnO3, La0.7Ba0.3MnO3; and NiGa with NiMn. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD); chemical composition was determined by Electron Dispersion Spectroscopy (EDS); magnetization measurements recur to a Vibrating Sample Magnetometer (VSM) prototype; and surface probing (SPM) using Magnetic-Force (MFM) and Piezo-Response (PFM) Microscopy. Results clearly show that the composite bulk samples (LuM+LSM and BTO+LBM) feat the intended quality objectives in terms of phase composition and purity, having spurious contents below 0.5 %. SEM images confirm compact grain packaging and size distribution around the 50 nm scale. Electric conductivity, magnetization intensity and magneto impedance spreading response are coherent with the relative amount of magnetic phase in the sample. The existence of coupling between the functional phases is confirmed by the Magnetoelectric effect measurements of the sample “78%LuM+22%LSM” reaching 300% of electric response for 1 T at 100 kHz; while in the “78%BTO+22%LBM” sample the structural transitions of the magnetic phase at ~350 K result in a inversion of ME coefficient the behavior. A functional Magneto-Resistance measurement system was assembled from the concept stage until the, development and operational status; it enabled to test samples from 77 to 350 K, under an applied magnetic field up to 1 Tesla with 360º horizontal rotation; this system was also designed to measure Hall effect and has the potential to be further upgraded. Under collaboration protocols established with national and international institutions, complementary courses and sample characterization studies were performed using Magneto-Resistance (MR), Magneto-Impedance (MZ) and Magneto-Electric (ME) measurements; Raman and X-ray Photoelectron Spectroscopy (XPS); SQUID and VSM magnetization; Scanning Electron Microscopy (SEM) and Rutherford Back Scattering (RBS); Scan Probe Microscopy (SPM) with Band Excitation Probe Spectroscopy (BEPS); Neutron Powder Diffraction (NPD) and Perturbed Angular Correlations (PAC). Additional collaboration in research projects outside the scope of multiferroic materials provided further experience in sample preparation and characterization techniques, namely VSM and XPS measurements were performed in cubane molecular complex compounds and enable to identify the oxidation state of the integrating cluster of Ru ions; also, XRD and EDS/SEM analysis of the acquired targets and substrates implied the devolution of some items not in conformity with the specifications. Direct cooperation with parallel research projects regarding multiferroic materials, enable the assess to supplementary samples, namely a preliminary series of nanopowder Y1-x-yCaxØyMn1O3 and of Eu0.8Y0.2MnO3, a series of micropowder composites of LuMnO3 with La0.625Sr0.375MnO3 and of BaTiO3 with hexagonal ferrites; mono and polycrystalline samples of Pr1-xCaxMnO3, La1-xSrxMnO3 and La1-xCaxMnO3.
O trabalho de doutoramento presente tem por objectivo a pesquisa e desenvolvimento de materiais que manifestem propriedades multiferróicas, em particular com uma significativa interacção entre os fenómenos de ferromagnetismo e ferroelectricidade; seja de forma intrínseca em determinados materiais singulares, ou extrínseca ao combinar materiais que apresentam respectivamente fenómenos magnetoestritivo e de piezoelectricidade e em que geralmente o acoplamento se processa mecanicamente entre as fases. Esta hibridação de propriedades permite a modificação dos estados de polarização magnética ou eléctrica por aplicação dos campos externos complementares (eléctricos e/ou magnéticos), dando origem a uma vasta área de investigação científica e potenciais aplicações tecnológicas numa nova geração de dispositivos electrónicos como memórias, processadores, transdutores, sensores, etc. O trabalho experimental inicial consistiu na síntese química de óxidos sob a forma de pós nanométricos, pelo método de pirólise da ureia; As séries de compósitos maciços com potenciais propriedades multiferróicas compreendem: LuMnO3 com La0.7Sr0.3MnO3 e BaTiO3 com La0.7Ba0.3MnO3; e uma série baseada na modificação com lacunas de Manganésio da fase multiferróica intrínseca LuMn1-zO3. A aquisição de um novo sistema de deposição por RF sputtering, no Departamento de Física da Universidade de Aveiro, contribuiu para a proposta de estudo análogo de amostras multiferróicas sob a forma de filmes finos e multicamadas. Além da estreia operacional do equipamento foram efectuadas algumas melhorias técnicas e funcionais de que se destacam: o desenho e construção das ligações eléctricas do aquecedor; de portadas, protecções e respectivos suportes para os magnetrões e para o “porta substratos”; a adição de dois controladores de fluxo de gás permitindo a introdução controlada de Árgon e de atmosfera activa de O2 ou N2 durante a deposição; e a adição de uma segunda fonte e controlador RF permitindo a co-deposição simultânea de filmes a partir de dois alvos diferentes. O estudo base sobre as condições de deposição e das características dos filmes finos resultantes em diferentes substratos foi efectuada a partir de uma extensa lista de alvos. Atenção particular foi dada à deposição de filmes finos das fases magnéticas de La1-xSrxMnO3, La1-xBaxMnO3 e da liga Ni2+x-yMn1-xGa1+y a partir dos correspondentes alvos La0.7Sr0.3MnO3; La0.7Ba0.3MnO3 e NiGa com NiMn. A caracterização estrutural das amostras foi efectuada com Difractometria por Raios-X (XRD) convencional e de elevada resolução; determinação da composição química foi essencialmente realizada por Espectroscopia de Dispersão de Electrões (EDS); medidas de magnetização foram executadas com recurso a um protótipo de Magnetometro por Vibração da Amostra (VSM) e as medidas de análise de superfície utilizaram Microscopia de Ponta (SPM) nas vertentes de piezo resposta (PFM) e de força magnética (MFM). Os resultados obtidos nos compósitos maciços (LuM+LSM e BTO+LBM) demonstram claramente que as amostras satisfazem os objectivos propostos em termos de composição pureza das fases, com eventual conteúdo em óxidos espúrios inferior a 0.5%. Imagens obtidas por SEM confirmam a compactação dos grãos e distribuição de tamanhos em torno dos 50 nm. Condutividade eléctrica, intensidade da magnetização e a dispersão da resposta em Magneto-Impedância são coerentes com a proporção relativa da fase magnética em cada amostra. A existência de um acoplamento entre as fases funcionais é evidenciada por medidas de efeito Magneto-Eléctrico na amostra “78%LuM+22%LSM” que apresenta uma resposta eléctrica de ~300% para 1 Tesla a 100 kHz; enquanto que na amostra “78%BTO+22%LBM” se assinala a transição estrutural da fase magnética a ~350 K resulta na inversão do comportamento do coeficiente ME. Um sistema de Medidas de Magneto-Resistência foi totalmente desenvolvido e montado desde a fase conceptual até ao estado operacional; permite testar amostras de 77 a 350 K em função do campo magnético até 1 Tesla, e rotação horizontal de 360º; o sistema foi também desenhado para poder efectuar medidas de efeito de Hall e permitir upgrades. Ao abrigo de protocolos de colaboração estabelecidos com diversas instituições nacionais e internacionais, foram realizados cursos de formação complementar e caracterização de amostras em técnicas como Magneto Resistência (MR), Magneto Impedância (MZ) e efeito Magneto Eléctrico (ME); Espectroscopia Raman e Fotoelectrónica de Raios-X (XPS); Magnetização via sistemas SQUID e VSM; Microscopia de Ponta em Piezo resposta (PFM) e Espectroscopia de excitação em largura de banda (BEPS); Espectroscopia de Rutherford por Retro dispersão (RBS); Difracção de Neutrões em pós (NPD) e Correlações de Perturbação Angular (PAC) Colaboração em projectos de investigação fora do âmbito dos materiais multiferróicos permitiu ampliar e versatilizar experiencia em técnicas de preparação e caracterização de amostras, nomeadamente medidas de VSM e XPS permitiram identificar os estados de oxidação dos clusters de iões de Ruténio que integram complexos moleculares utilizados em catalisadores; A certificação por XRD e SEM/EDS do conjunto dos alvos e amostragem dos substratos adquiridos implicou a devolução de alguns itens com por falta de conformidade com as especificações. Cooperação directa em projectos de investigação paralelos sobre materiais multiferróicos permitiu o acesso a amostras suplementares, nomeadamente a uma série nano pós de Y1-x-yCaxØyMn1O3 e de Eu0.8Y0.2MnO3; a series de compósitos microestruturados de LuMnO3 com La0.625Sr0.375MnO3 e de BaTiO3 com ferrites hexagonais; e a diversas amostras poli- e mono-cristalinas de Pr1-xCaxMnO3, La1-xSrxMnO3 e La1-xCaxMnO3.
FCT - SFRH/BD/25011/2005
Valdes, Aguilar Rolando. "Electromagnons in multiferroic materials." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8851.
Full textThesis research directed by: Dept. of Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Dixit, Anant. "Relativistic effects : applications to multiferroic materials." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE037/document.
Full textWe studied the physics of materials where relativistic effects are important. We first coupled the semi-relativistic Hamiltonian with the Maxwell's equations, and derived the current and density sources, which included second-order terms like the spin and Darwin polarizations. Different models were developed, by expanding the Maxwell's equations. We then performed ab initio studies to explain (1) site disorders as the origin of ferrimagnetism in multiferroic GaFeO3 (GFO), (2) crystal-field theory where the Fe 3d states at the deformed octahedra have tetrahedral splittings, (3) the electric polarization as a function of temperature, and (4) the insufficiency of the direct magnetoelectric (ME) mechanism to explain observed ME behavior. For Cr2O3, bulk calculations for different biaxial strains failed to explain its ferromagnetism, indicating that size or excess-O effects might be important. Finally, we implemented XAS and XMCD in VASP and computed these spectra for GFO
Yang, Mingmin. "Photoelectric processes in ferroelectric/multiferroic materials." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/105580/.
Full textLawrence, Shane Michael. "X-ray and neutron scattering of multiferroic LuFe2O4." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/1336.
Full textCoy, Emerson. "Growth and characterization of new multiferroic materials." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/395177.
Full textLos materiales multiferroicos, en los que dos o más ordenes ferroicos tienen lugar en la misma fase, ha despertado gran interés en los últimos años debido, no solo al hecho de explorar nuevas propiedades físicas en los materiales, sino también a las implicaciones de las nuevas propiedades funcionales en las aplicaciones tecnológicas. De dichos materiales resultan especialmente interesantes aquellos que presentan un orden ferroeléctrico (FE) y ferromagnético (FM) debido a su aplicación directa en dispositivos magnetoelectrónicos. En este ámbito los materiales multiferroicos podrían tener una gran relevancia en una nueva generación de memorias magnéticas RAM (MRAM) de control eléctrico, no volátiles, en las que, si el acoplamiento magnetoeléctrico es suficientemente grande, se podría modificar el estado magnético no con un campo magnético sino con un campo eléctrico. Este hecho permitiría una reducción radical en el consumo de potencia y favorecería a su vez una mayor integración (la principal desventaja de las MRAMs para competir en el mercado), ya que el campo eléctrico, a diferencia del campo magnético, puede aplicarse de forma muy localizada. Por otro lado, dichos materiales multiferroicos podrían emplearse en una nueva generación de uniones túnel, en las que el carácter ferroeléctrico y ferromagnético permitiría codificar información en cuatro estados resistivos en lugar de en dos, como viene siendo hasta ahora en las convencionales uniones túnel magnéticas o ferroeléctricas, dando lugar a una nueva generación de memorias de cuatro estados. Los materiales con estructura perovskita, ABB '03, (A=Tierra Rara, Bismuto, Plomo e Ytrio) ofrecen una gran versatilidad a la hora de diseñar materiales funcionales debido a la gran variedad de cationes A, B y B' compatibles con tal estructura. Sin embargo en el caso de R(NiMn)03, estos óxidos han sido poco estudiados y muchos carecen de estudios detallados tanto en forma másica como en capa fina. Esta selección de cationes en la posición B y B' parece transformar la estructura perovskita la cual típicamente presenta un ordenamiento paramagnético (PM) en FM a temperaturas inferiores a la ambiente. El carácter multiferroico de estos materiales es típicamente aportado por el catión A en la formula perovskita, el cual puede ser un átomo de Bi, o Pb, para crear un multiferroico tipo 1. En los materiales de este tipo, por ejemplo el Bi2NiMnO6, la ferroelectricidad y el ferromagnetismo provienen de fuentes diferentes, el carácter FE es aportado por el catión A con -lone pairs electrons-, los cuales son electrones libres en la banda de valencia que no participan en las reacciones químicas del compuesto, mientras la combinación Ni2+ (d8) and Mn4+ (d3) aporta el FM. Pese al carácter multiferroico de estos materiales su acoplamiento magnetoelectrico, indispensable para sus aplicaciones industriales futuras, es débil, puesto que su FE y FM provienen de efectos independientes. Por otra parte la inducción de FE por distorsiones geométricas de la celda perovskitas, como es el caso de YMnO3 (YMO), es un caso interesante de considerar ya que la rotación de los octaedros Mn05 genera un cambio estructural importante, en el cual los oxígenos se desplazan a una posición más cercana al Y, esto sumado a una larga interacción de los dipolos conduce al material a un estado FE estable. Además la deformación de la celda genera un débil FM en este material, el cual proviene un pequeño giro en los espines del Mn ya sea debido a un dopaje con Li o por la deformación de la celda. Este comportamiento podría resultar interesante en la familia de perovskitas R(NiMn)03 las cuales presentan un fuerte FM. Esta tesis está dedicada al estudio de la perovskitas R(Ni0.5Mn0.5)O3 (Y, Sm, Nd y Pr) y Bi(Fe0.5Mn0.5)O6 crecidas en capa fina usando la técnica de depósito mediante ablación por láser pulsado. En primer lugar, esta tesis se centra en el crecimiento y caracterización de capas finas del compuesto Y(Ni0.5Mn0.5)O3 (YNMO) sobre substratos de titanato de estroncio, SrTiO3(001) (STO). Se estudia la influencia de los parámetros de depósito tales como temperatura, fluencia y frecuencia de ablación sobre la morfología y la calidad cristalina de las capas obtenidas. El estudio pone de manifiesto que las capas de YNMO crecidas sobre substratos de STO(001,011 y 111) son epitaxiales de YNMO y que la calidad cristalina y las relaciones epitaxiales entre la capa y el substrato son semejantes a las obtenidas en el compuesto YMO. En particular se observa un único dominio cristalino fuera del plano independientemente de la orientación del sustrato, mientras que dentro del plano se presentan varios dominios cristalinos. Por otra parte, los estudios de composición química revelan una difusión de Ti desde el sustrato hacía la capa de YMNO cuando se utilizan substratos STO(111).. Una vez optimizadas las condiciones de crecimiento del compuesto YNMO, se estudian sus propiedades magnéticas y dieléctricas. Todas las capas presentan una transición de fase paramagnetica a ferromagnética a una temperatura alrededor de 95K con un momento magnético de YNMO(001)= 4.35µB/f.u, YNMO(100) = 4,4 µB/f.u and YNMO(101) = 3,7µB/f.u, confirmando el carácter ferromagnético de las muestras. La caracterización dieléctrica revela el carácter FE de las capas de YNMO y lo que es más interesante, la existencia de anisotropía dieléctrica en las capas, ésta se pone de manifiesto en la ausencia de respuesta FE en capas YNMO sobre STO(001) que contrasta con la fuerte respuesta de las capas de YNMO sobre STO(111). Esta anisotropía puede tener su origen, a la luz de los recientes estudios teóricos, en el carácter impropio de la ferroelectricidad observada, a la luz de recientes estudios teóricos. La coexistencia de FM y FE muestra de manera conclusiva el carácter multiferroico del compuesto YNMO. En segundo lugar se han realizado estudios similares a los anteriores para el caso de capas finas de los compuestos del tipo R(Ni0.5Mn0.5)O3 (Sm, Nd y Pr) crecidas en STO(001). En este caso la influencia de la temperatura de depósito resulta ser un factor importante para la obtención, en todos los compuestos estudiados, de crecimiento epitaxial. Se observa que el cociente b/a entre las constantes red juega un factor importante en la epitaxia de las capas, siendo este cociente un factor determinante en el crecimiento mono-dominio o multi-dominio de las capas. Todas las muestras presentan transiciones PM a FM a temperaturas alrededor de 190K. Por último, se han crecido y estudiado capas finas del compuesto Bi(Fe0.5Mn0.5)O6 depositadas sobre STO(001). Las capas obtenidas son epitaxiales y crecen sometidas a estrés inducido por el substrato. Presentan comportamiento FM a temperatura ambiente pero con una débil señal de 7,42 emu/cm3 y 0,4 µB/f.u(Fe-Mn). La caracterización dieléctrica pone de manifiesto la influencia, a temperaturas superiores a la ambiente, de la presencia de campo magnético sobre las propiedades dieléctricas.
Hughes, Helen. "Synthesis and characterisation of potential multiferroic materials." Thesis, University of Liverpool, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479084.
Full textOnbaş̧lı, Mehmet Cengiz. "Magneto-optical and multiferroic oxide thin films, integrated nonreciprocal photonic devices and multiferroic memory devices." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98579.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Complex oxide thin films offer unique functionalities which can potentially extend the utility of current storage, processing and optical isolator technologies. In this thesis, we present three categories of studies on complex oxide growth using pulsed laser deposition (PLD) and structural, magnetic, magneto-optical and ferroelectric characterization. We first focused on enhancing integrated magneto-optical isolator performance by improving the growth method of magneto-optical Ce1Y2Fe5O12 (Ce:YIG) films. The spectral and substrate orientation dependence of the magneto-optical figure of merit of epitaxial Ce: YIG on GGG substrates show very high magneto-optical figure of merit (379-400° dB-1 at [lambda] = 1550 nm for all substrate orientations). The thermal budgets of Ce: YIG growth on ShN4 (2 high temperature PLD steps and a rapid thermal anneal, RTA), silicon-on-insulator substrates (a high and a low temperature PLD step and a RTA) and optical resonator chips (one PLD step, one RTA, YIG seed layer from the top) were progressively reduced to achieve improved integrated optical isolators with low insertion loss of 7.4 ± 1.8 dB and an isolation ratio of 13.0 ± 2.2 dB. We demonstrated that the ferrimagnetic insulator YIG thin films (Y3Fe5O12) epitaxially grown on GGG substrates achieve ultralow Gilbert damping of spin waves ([alpha] = 2.2-7 x 10-4 ), which enable em-long in-plane propagation of spin waves. This demonstration enables researchers to fabricate near-dissipationless magnon-based logic computers. Finally, we present a substitutionally-doped perovksite, STCo30 (Sr Ti0.70 CO0.30 O3-[delta]) integrated on Si, STO (100), and on Nb:STO substrates. This perovskite oxide has been found to exhibit ferroelectricity and magnetism at room temperature. Experimental results on magnetism, ferroelectricity and structure were reproduced using density functional theory simulations.
by Mehmet Cengiz Onbaş̧lı.
Ph. D.
Aimon, Nicolas M. "Templated self-assembly of multiferroic nanocomposites." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89948.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-150).
To respond to the growing demand for smart and connected devices, such as smartphones, tablet PCs arid other mobile hardware, while meeting the needs for increased power efficiency, miniaturization and reduced manufacturing costs, new material solutions need to be considered. These should address the shortcomings of incumbent semiconductor-based technologies which provide a limited number of functionalities, suffer from high power consumption and heat dissipation, and whose conventional planar processing is increasingly complex and resource-intensive. Potential replacement materials include complex oxides, which exhibit interesting physical phenomena such as superconductivity, colossal magnetoresistance and multiferroicity. New functionalities are especially found at interfaces between two oxides, including emergent electronic states like two-dimensional electron gases, enhanced ionic transport and magnetoelectric coupling, among many other. In this this thesis, we focus on self-assembled oxide nanocomposites, which elegantly organize into vertical nanostructures via spontaneous phase-separation, naturally forming numerous such heterointerfaces. These provide a rich playground for studying interfacial effects, which could be used in future devices, and the self-assembly promises cheap arid high throughput manufacturing providing it can be integrated into useful architectures. BiFeO₃-CoFe₂O₄ self-assembled nanocomposites, in particular, have been studied for the magnetoelectric coupling that takes place between the ferrimagnetic spinel phase, which forms discrete vertical pillars, arid the ferroelectric perovskite phase, which forms a matrix that surrounds the spinel pillars. Here, after an in-depth study of the mechanisms responsible for the formation of this self-assembled nanostructure, we develop a templating method enabling the precise control over the morphology of the film, resulting in useful structures for potential devices like magnetoelectric memories and logic devices. To study the structural, magnetic and electrical properties of our samples, a set of experimental and theoretical methods is developed, adapted to the unique requirements of these thin film nanostructures with iicron-scale ordering. Using finite element analysis and micromagnetic modeling, the effect of the strain-mediated magnetoelectic coupling on the magnetic switching of the CoFe₂O₄ nanopillars is predicted. Scanning Probe Microscopy is also used to characterize the local ferroelectric and magnetic behavior, and observe, for the first time in these templated composites, electrically-induced magnetic switching of the pillar magnetization. The tools and methods developed in this thesis could pave the way towards a wider use of templated self-assembly to leverage the promising properties of oxide heterointerfaces and enable their use in future devices with low manufacturing costs.
by Nicolas M. Airmon.
Ph. D.
González, Vázquez Otto E. "First-principles investigation of BiFeO3 and related multiferroic materials." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96248.
Full textThis work is about magnetoeltric multiferroics, a relatively new class of ma- terials discovered by the mid of the past century, which involve simultaneously ferroelectricity and magnetism. Perovskite oxide BiFeO3 (BFO) is one of the few multiferroic materials at room temperature. However, as its ferroelectric and anti- ferromagnetic transition temperatures are relatively high (about 1100 K and 640 K, respectively), BFO's electromechanical and magnetoelectric responses are small at ambient conditions. In this thesis we used ab-initio methods, based on density functional theory, to study the basic properties of BFO and proposed possible strategies for enhancing its response. We used rst-principles methods to perform a systematic search for potentially stable phases of BFO. We considered the distortions that are most common among perovskite oxides and found a large number of local minima of the energy. We discussed the variety of low-symmetry structures discovered, as well as the implications of these ndings as regards current experimental work on this compound. We also carried out a study of the Bi1�xLaxFeO3 (BLFO) solid solution formed by multiferroic BFO and the paraelectric antiferromagnet LaFeO3 (LFO). We dis- cussed the structural transformations that BLFO undergoes as a function of La content and the connection of our results with the existing crystallographic stud- ies. We found that, in a wide range of intermediate compositions, BLFO presents competitive phases that are essentially degenerate in energy. Further, our results suggested that, within this unusual morphotropic region, an electric eld might be used to induce various types of paraelectric-to-ferroelectric transitions in the compound. We also discussed BLFO's response properties and showed that they can be signi cantly enhanced by partial substitution of Bi/La atoms in the pure BFO and LFO materials. We analyzed the atomistic mechanisms responsible for such improved properties and showed that the e ects can be captured by simple phenomenological models that treat explicitly the composition x in a Landau-like potential. Furthermore, we performed a rst-principles study of BFO at high pressures. Our work revealed the main structural change in Bi's coordination and suppression of the ferroelectric distortion, electronic spin crossover and metallization, and mag- netic loss of order e ects favored by compression and how they are connected. Our results are consistent with and explain the striking manifold transitions observed experimentally We conclude our thesis presenting the preliminary results of an ongoing project in which we are modeling the energetics of the oxygen octahedra rotations in per- ovskite oxides. The model is tted to the rst-principles results and a careful check of its validity is carried out.
Books on the topic "Multiferroic Materials"
Bochenek, Dariusz. Technologia wytwarzania i właściwości multiferroikowej ceramiki typu PFN: Manufacturing technology and properties of the multiferroic PFN ceramics = [Tekhnologii︠a︡ poluchenii︠a︡ i svoĭstva mulʹtiferroika na primere keramiki tipa PFN]. Katowice: Wydawnictwo Uniwersytetu Ślaskiego, 2012.
Find full textWiraka, Haradewa Siṅgha, and Wolfgang Kleemann. Ferroics and multiferroics: Special topic volume with invited peer reviewed papers only. Zurich: Trans Tech Publications, 2012.
Find full textMaruchiferoikusu: Busshitsuchū no denjikigaku no shintenkai = Multiferroics : new development of electromagnetism in materials. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2014.
Find full textPavlov, Sergey. Methods of catastrophe theory in the phenomenology of phase transitions. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1004276.
Full textMultifunctional Multiferroic Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.97901.
Full textWang, Junling. Multiferroic Materials: Properties, Techniques, and Applications. Taylor & Francis Group, 2016.
Find full textMultiferroic Materials: Properties, Techniques, and Applications. Taylor & Francis Group, 2016.
Find full textWang, Junling. Multiferroic Materials: Properties, Techniques, and Applications. Taylor & Francis Group, 2016.
Find full textWang, Junling. Multiferroic Materials: Properties, Techniques, and Applications. Taylor & Francis Group, 2016.
Find full textBook chapters on the topic "Multiferroic Materials"
Wang, Biao. "Multiferroic Materials." In Advanced Topics in Science and Technology in China, 377–441. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33596-9_8.
Full textPeng, Wanjun, Ziyao Zhou, and Ming Liu. "Multiferroic Materials." In Integrated Multiferroic Heterostructures and Applications, 5–50. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch2.
Full textSalje, Ekhard. "Ferroic and Multiferroic Materials." In Handbook of Nanoscopy, 1273–301. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527641864.ch35.
Full textKleemann, Wolfgang, and Christian Binek. "Multiferroic and Magnetoelectric Materials." In Springer Tracts in Modern Physics, 163–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32042-2_5.
Full textCastán, Teresa, Antoni Planes, and Avadh Saxena. "Thermodynamics of Multiferroic Materials." In Mesoscopic Phenomena in Multifunctional Materials, 73–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55375-2_4.
Full textYan, Yongke, and Shashank Priya. "Multiferroic Magnetoelectric Composites/Hybrids." In Hybrid and Hierarchical Composite Materials, 95–160. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12868-9_4.
Full textAgrawal, Arpana, and Tanveer Ahmad Dar. "Spectroscopic Techniques for Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 629–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_20.
Full textSeidel, Jan, and Ramamoorthy Ramesh. "Nanoscale Characterization of Multiferroic Materials." In Mesoscopic Phenomena in Multifunctional Materials, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55375-2_1.
Full textWei, Daoyang. "Studies on novel multiferroic materials." In Advances in Materials Science, Energy Technology and Environmental Engineering, 449–52. P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com , www.crcpress.com – www.taylorandfrancis.com: CRC Press/Balkema, 2016. http://dx.doi.org/10.1201/9781315227047-91.
Full textAgrawal, Arpana, and Tanveer Ahmad Dar. "Spectroscopic Techniques for Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_20-1.
Full textConference papers on the topic "Multiferroic Materials"
DeGiorgi, Virginia G., Peter Finkel, Lauren Garten, and Margo Staruch. "Transduction Using Functional Materials: Basic Science and Understanding at the U. S. Naval Research Laboratory." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5501.
Full textFiebig, Manfred. "Nonlinear Optics of Multiferroic Materials." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872480.
Full textPrashanthi, K., T. Thundat, and V. R. Palkar. "Piezoelectric response of novel multiferroic microcantilevers." In Nanoscale Phenomena in Polar Materials. IEEE, 2011. http://dx.doi.org/10.1109/isaf.2011.6014157.
Full textRoy, Subhasis, Bulbul Biswas, S. B. Majumder, Shyamalendu M. Bose, S. N. Behera, and B. K. Roul. "Investigations on Flexible Multiferroic Composites." In MESOSCOPIC, NANOSCOPIC AND MACROSCOPIC MATERIALS: Proceedings of the International Workshop on Mesoscopic, Nanoscopic and Macroscopic Materials (IWMNMM-2008). AIP, 2008. http://dx.doi.org/10.1063/1.3027171.
Full textMaglione, Mario. "Recent advances in integrated ferroelectric and multiferroic materials." In 2010 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF). IEEE, 2010. http://dx.doi.org/10.1109/smic.2010.5422992.
Full textDomann, John P., and Greg P. Carman. "Strain mediated multiferroic motors (Conference Presentation)." In Behavior and Mechanics of Multifunctional Materials and Composites XI, edited by Nakhiah C. Goulbourne. SPIE, 2017. http://dx.doi.org/10.1117/12.2263403.
Full textDubey, Pralekh, Rajveer Kaur, and S. S. Ghumman. "Magnetoelectric multiferroic, y-type hexaferrites – A review." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052452.
Full textRieck, Jan, Cynthia Quinteros, Mart Salverda, and Beatriz Noheda. "Multiferroic BiFeO3 Domain Walls as Memristive Devices." In Materials, devices and systems for neuromorphic computing 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.matnec.2022.016.
Full textRamesh, J., S. S. K. Reddy, G. Padmasree, M. Sreenath Reddy, Ch Gopal Reddy, P. Yadagiri Reddy, K. Rama Reddy, and V. Raghavendra Reddy. "The characterization of Nd doped BiFeO3 multiferroic polycrystalline materials." In INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0020659.
Full textRajeswari, R., M. R. Biswal, J. Nanda, and N. C. Mishra. "Multiferroic bismuth ferrite material core based inductive displacement sensor." In FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736914.
Full textReports on the topic "Multiferroic Materials"
Carman, Greg P., Gavin Chang, and Grayson Bush. Modeling Multiferroic Materials. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada472800.
Full textSaxena, Avadh. Mesoscopic modeling of ferroic and multiferroic materials. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1338789.
Full textHaraldsen, Jason T. Understanding the magnetic ground states for improper multiferroic materials. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073745.
Full textZapf, Vivien, Marcelo Jaime, Shalinee Chikara, Ian Fisher, and C. D. Batista. Lack of multiferroic behavior in BaCuSi2O6 is consistent with the frustrated magnetic scenario for this material. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345908.
Full text