Journal articles on the topic 'Multifunctional batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multifunctional batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mullenax, Joshua, Patrick Browning, Wade Huebsch, Mridul Gautam, and Edward M. Sabolsky. "Composite Multifunctional Lithium-Ion Batteries." ECS Transactions 41, no. 41 (2019): 175–85. http://dx.doi.org/10.1149/1.4717975.
Full textWehner, Linda A., Neeru Mittal, Tian Liu, and Markus Niederberger. "Multifunctional Batteries: Flexible, Transient, and Transparent." ACS Central Science 7, no. 2 (2021): 231–44. http://dx.doi.org/10.1021/acscentsci.0c01318.
Full textKalnaus, Sergiy, Leif E. Asp, Jianlin Li, et al. "Multifunctional approaches for safe structural batteries." Journal of Energy Storage 40 (August 2021): 102747. http://dx.doi.org/10.1016/j.est.2021.102747.
Full textLutkenhaus, Jodie L., and Paraskevi Flouda. "Structural batteries take a load off." Science Robotics 5, no. 45 (2020): eabd7026. http://dx.doi.org/10.1126/scirobotics.abd7026.
Full textLiu, Ping, Elena Sherman, and Alan Jacobsen. "Design and fabrication of multifunctional structural batteries." Journal of Power Sources 189, no. 1 (2009): 646–50. http://dx.doi.org/10.1016/j.jpowsour.2008.09.082.
Full textQi, Qi, Xiaohui Lv, Wei Lv, and Quan-Hong Yang. "Multifunctional binder designs for lithium-sulfur batteries." Journal of Energy Chemistry 39 (December 2019): 88–100. http://dx.doi.org/10.1016/j.jechem.2019.02.001.
Full textFan, Wei, Longsheng Zhang, and Tianxi Liu. "Multifunctional second barrier layers for lithium–sulfur batteries." Materials Chemistry Frontiers 2, no. 2 (2018): 235–52. http://dx.doi.org/10.1039/c7qm00405b.
Full textLuo, Xiang, Xianbo Lu, Xiaodong Chen, et al. "A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries." Journal of Materials Chemistry A 8, no. 29 (2020): 14788–98. http://dx.doi.org/10.1039/d0ta00439a.
Full textSadighi, Zoya, Jiapeng Liu, Ling Zhao, Francesco Ciucci, and Jang-Kyo Kim. "Metallic MoS2 nanosheets: multifunctional electrocatalyst for the ORR, OER and Li–O2 batteries." Nanoscale 10, no. 47 (2018): 22549–59. http://dx.doi.org/10.1039/c8nr07106c.
Full textDeng, Ding-Rong, Jie Lei, Fei Xue, et al. "In situ preparation of a macro-chamber for S conversion reactions in lithium–sulfur batteries." Journal of Materials Chemistry A 5, no. 45 (2017): 23497–505. http://dx.doi.org/10.1039/c7ta08309b.
Full textBanerjee, Shilpi, and Dipankar Chakravorty. "Multifunctional Mesoporous Nanocomposites." Materials Science Forum 736 (December 2012): 98–119. http://dx.doi.org/10.4028/www.scientific.net/msf.736.98.
Full textLiu, Huayun, Hao Cheng, Han Jin, Cheng Gao, Peng Zhang, and Miao Wang. "Manganese dioxide nanosheet coated carbon cloth as a multifunctional interlayer for advanced lithium–sulfur batteries." Materials Advances 2, no. 2 (2021): 688–91. http://dx.doi.org/10.1039/d0ma00793e.
Full textLing, Min, Jingxia Qiu, Sheng Li, et al. "Multifunctional SA-PProDOT Binder for Lithium Ion Batteries." Nano Letters 15, no. 7 (2015): 4440–47. http://dx.doi.org/10.1021/acs.nanolett.5b00795.
Full textPetty, Anthony, Shane C. Mann, Adina Dumitrascu, Kevin Olson, and Thomas F. Guarr. "Multifunctional Pyridinium Systems for Nonaqueous Redox Flow Batteries." ECS Transactions 80, no. 10 (2017): 1241–55. http://dx.doi.org/10.1149/08010.1241ecst.
Full textXiao, Xingcheng, Peng Lu, and Dongjoon Ahn. "Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries." Advanced Materials 23, no. 34 (2011): 3911–15. http://dx.doi.org/10.1002/adma.201101915.
Full textKim, Soochan, Misuk Cho, and Youngkwan Lee. "Saponin: Multifunctional Additive Toward Advanced Lithium-Sulfur Batteries." ECS Meeting Abstracts MA2020-02, no. 68 (2020): 3484. http://dx.doi.org/10.1149/ma2020-02683484mtgabs.
Full textZhai, Pan, Kexin Liu, Zhuyi Wang, Liyi Shi, and Shuai Yuan. "Multifunctional separators for high-performance lithium ion batteries." Journal of Power Sources 499 (July 2021): 229973. http://dx.doi.org/10.1016/j.jpowsour.2021.229973.
Full textHe, Xiaobo, Fengxiang Yin, Guoru Li, Biaohua Chen, Shuo Wang, and Mingcheng Gu. "CoNi alloys with slight oxidation@N,O Co-doped carbon: enhanced collective contributions of cores and shells to multifunctional electrocatalytic activity and Zn–air batteries." Journal of Materials Chemistry A 8, no. 48 (2020): 25805–23. http://dx.doi.org/10.1039/d0ta08865j.
Full textDou, Xiaoyuan, Gaoran Li, Wenyao Zhang, et al. "Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries." Journal of Materials Chemistry A 8, no. 10 (2020): 5062–69. http://dx.doi.org/10.1039/c9ta12573f.
Full textZhang, Heng, Peigen Zhang, Long Pan, et al. "Ti3C2Tx nanosheet wrapped core–shell MnO2 nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li–S batteries." Nanoscale 12, no. 47 (2020): 24196–205. http://dx.doi.org/10.1039/d0nr06151d.
Full textZhang, Lu, Tao Meng, Baoguang Mao, Donglei Guo, Jinwen Qin, and Minhua Cao. "Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting." RSC Advances 7, no. 80 (2017): 50812–21. http://dx.doi.org/10.1039/c7ra10292e.
Full textLiu, Hanwen, Wei-Hong Lai, Yaru Liang, et al. "Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries." Journal of Materials Chemistry A 9, no. 1 (2021): 566–74. http://dx.doi.org/10.1039/d0ta08748c.
Full textShim, Jimin, Hee Joong Kim, Byoung Gak Kim, Yong Seok Kim, Dong-Gyun Kim, and Jong-Chan Lee. "2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries." Energy & Environmental Science 10, no. 9 (2017): 1911–16. http://dx.doi.org/10.1039/c7ee01095h.
Full textGao, D., J. B. Xu, M. Lin, Q. Xu, C. F. Ma, and H. F. Xiang. "Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries." RSC Advances 5, no. 23 (2015): 17566–71. http://dx.doi.org/10.1039/c4ra15899g.
Full textGuo, Yi, Yin Zhang, Yali Sun, Yun Zhang, and Hao Wu. "Graphene-nanoscroll-based Integrated and self-standing electrode with a sandwich structure for lithium sulfur batteries." Inorganic Chemistry Frontiers 7, no. 3 (2020): 592–96. http://dx.doi.org/10.1039/c9qi01344j.
Full textTang, Tianyu, Teng Zhang, Lina Zhao, et al. "Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries." Materials Chemistry Frontiers 4, no. 5 (2020): 1483–91. http://dx.doi.org/10.1039/d0qm00082e.
Full textSun, Xiuping, Suyuan Zeng, Ruxia Man, et al. "Yolk–shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries." Nanoscale 13, no. 23 (2021): 10385–92. http://dx.doi.org/10.1039/d1nr01227d.
Full textKim, Mun Sek, Lin Ma, Snehashis Choudhury, and Lynden A. Archer. "Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries." Advanced Materials Interfaces 3, no. 22 (2016): 1600450. http://dx.doi.org/10.1002/admi.201600450.
Full textYang, Dezhi, Ruoyu Zhi, Daqian Ruan, et al. "A multifunctional separator for high-performance lithium-sulfur batteries." Electrochimica Acta 334 (February 2020): 135486. http://dx.doi.org/10.1016/j.electacta.2019.135486.
Full textWei, Jian, Huan Su, Congmin Qin, Bing Chen, Hao Zhang, and Jiamin Wang. "Multifunctional Co9S8 nanotubes for high-performance lithium-sulfur batteries." Journal of Electroanalytical Chemistry 837 (March 2019): 184–90. http://dx.doi.org/10.1016/j.jelechem.2019.02.034.
Full textBhoyate, Sanket, Junyoung Kim, Eunho Lee, et al. "Mixed phase 2D Mo0.5W0.5S2 alloy as a multi-functional electrocatalyst for a high-performance cathode in Li–S batteries." Journal of Materials Chemistry A 8, no. 25 (2020): 12436–45. http://dx.doi.org/10.1039/d0ta04354k.
Full textNa, Ren, Nadine Madiou, Ning Kang та ін. "A multifunctional anode with P-doped Si nanoparticles in a stress-buffering network of poly-γ-glutamate and graphene". Chemical Communications 56, № 92 (2020): 14412–15. http://dx.doi.org/10.1039/d0cc06623k.
Full textMullaivananathan, V., P. Packiyalakshmi, and N. Kalaiselvi. "Multifunctional bio carbon: a coir pith waste derived electrode for extensive energy storage device applications." RSC Advances 7, no. 38 (2017): 23663–70. http://dx.doi.org/10.1039/c7ra03078a.
Full textLiu, Lina, Feng Yan, Kaiyue Li, et al. "Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts." Journal of Materials Chemistry A 7, no. 3 (2019): 1083–91. http://dx.doi.org/10.1039/c8ta10083g.
Full textZhou, Junwen, and Bo Wang. "Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage." Chemical Society Reviews 46, no. 22 (2017): 6927–45. http://dx.doi.org/10.1039/c7cs00283a.
Full textZhang, Miao, Kamran Amin, Meng Cheng, et al. "A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium–sulfur batteries." Nanoscale 10, no. 46 (2018): 21790–97. http://dx.doi.org/10.1039/c8nr07964a.
Full textCheng, Yafei, Fan Liao, Wen Shen, et al. "Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries." Nanoscale 9, no. 47 (2017): 18977–82. http://dx.doi.org/10.1039/c7nr06859j.
Full textYang, Tianxiang, Huanna Zeng, Wenlian Wang, et al. "Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5 V LiNi0.5Mn1.5O4-based lithium-ion batteries with enhanced electrochemical performance." Journal of Materials Chemistry A 7, no. 14 (2019): 8292–301. http://dx.doi.org/10.1039/c9ta01293a.
Full textShi, Nianxiang, Baojuan Xi, Zhenyu Feng, et al. "Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium–sulfur batteries." Journal of Materials Chemistry A 7, no. 8 (2019): 4009–18. http://dx.doi.org/10.1039/c8ta12409d.
Full textWang, Pu, Zhongti Sun, Hui Liu, et al. "Strategic synthesis of sponge-like structured SiOx@C@CoO multifunctional composites for high-performance and stable lithium-ion batteries." Journal of Materials Chemistry A 9, no. 34 (2021): 18440–53. http://dx.doi.org/10.1039/d1ta02880d.
Full textLadpli, Purim, Raphael Nardari, Fotis Kopsaftopoulos, and Fu-Kuo Chang. "Multifunctional energy storage composite structures with embedded lithium-ion batteries." Journal of Power Sources 414 (February 2019): 517–29. http://dx.doi.org/10.1016/j.jpowsour.2018.12.051.
Full textJavaid, Atif, and Muhammad Zeshan Ali. "Multifunctional structural lithium ion batteries for electrical energy storage applications." Materials Research Express 5, no. 5 (2018): 055701. http://dx.doi.org/10.1088/2053-1591/aabeb1.
Full textLee, Chan Kyu, and Yong Joon Park. "CsI as Multifunctional Redox Mediator for Enhanced Li–Air Batteries." ACS Applied Materials & Interfaces 8, no. 13 (2016): 8561–67. http://dx.doi.org/10.1021/acsami.6b01775.
Full textLee, Donggue, Hyun-Woo Kim, Ju-Myung Kim, Ka-Hyun Kim, and Sang-Young Lee. "Flexible/Rechargeable Zn–Air Batteries Based on Multifunctional Heteronanomat Architecture." ACS Applied Materials & Interfaces 10, no. 26 (2018): 22210–17. http://dx.doi.org/10.1021/acsami.8b05215.
Full textWei, Benben, Chaoqun Shang, Xin Wang, and Guofu Zhou. "Conductive FeOOH as Multifunctional Interlayer for Superior Lithium–Sulfur Batteries." Small 16, no. 34 (2020): 2002789. http://dx.doi.org/10.1002/smll.202002789.
Full textAnton, S. R., A. Erturk, and D. J. Inman. "Multifunctional self-charging structures using piezoceramics and thin-film batteries." Smart Materials and Structures 19, no. 11 (2010): 115021. http://dx.doi.org/10.1088/0964-1726/19/11/115021.
Full textYoo, Gayeon, Soochan Kim, Chalathorn Chanthad, Misuk Cho, and Youngkwan Lee. "Elastic rubber-containing multifunctional binder for advanced Li-S batteries." Chemical Engineering Journal 405 (February 2021): 126628. http://dx.doi.org/10.1016/j.cej.2020.126628.
Full textQu, Hongtao, Jianjun Zhang, Aobing Du, et al. "Multifunctional Sandwich-Structured Electrolyte for High-Performance Lithium-Sulfur Batteries." Advanced Science 5, no. 3 (2018): 1700503. http://dx.doi.org/10.1002/advs.201700503.
Full textYuan, Ning, Wenduo Sun, Jinlin Yang, Xinrui Gong, and Ruiping Liu. "Multifunctional MOF‐Based Separator Materials for Advanced Lithium–Sulfur Batteries." Advanced Materials Interfaces 8, no. 9 (2021): 2001941. http://dx.doi.org/10.1002/admi.202001941.
Full textMoyer, Kathleen, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, and Cary L. Pint. "Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries." Sustainable Energy & Fuels 4, no. 6 (2020): 2661–68. http://dx.doi.org/10.1039/d0se00263a.
Full text