Academic literature on the topic 'Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT"

1

Adamowicz, Marek, Zbigniew Krzemiński, and Paweł Stec. "Dual Active Bridge (DAB) DC-DC converter for multilevel propulsion converters for electrical multiple units (EMU)." MATEC Web of Conferences 180 (2018): 04002. http://dx.doi.org/10.1051/matecconf/201818004002.

Full text
Abstract:
Semiconductor power devices made from silicon carbide (SiC) reached a level of technology enabling their widespread use in power converters. Two different approaches to implementation of modern traction converters in electric multiple units (EMU) have been presented in recent years: (i) 3.3-kV SiC MOSFET-based three-level PWM inverter with regenerative braking and (ii) 6.5-kV IGBT-based fourquadrant power electronic traction transformer (PETT). The former has successfully reached optimized dimensions and efficiency but still requires a bulky line frequency transformer for multisystem applications. The latter characterizes inherent galvanic isolation from AC traction, which is realized by cascaded system of power electronic cells containing medium frequency transformers (MFT). The downsizing of the 6.5-kV IGBT-based cells is, however, problematic. The present paper proposes a different approach, that involves the use of a fast switching 1.2-kV SiC MOSFETS. The SiC-based PETT proposed in the paper is dedicated first for the DC traction. For multi-system application the input voltage of the proposed PETT can be adjusted using weight-optimized adjusting autotransformer. Thanks to utilization of fast-switching SiCbased power modules the weight and size of the power electronic cells can be optimized in a convenient way.
APA, Harvard, Vancouver, ISO, and other styles
2

Ahamed Ibrahim, S. A., P. Anbalagan, and M. A. Jagabar Sathik. "A New Asymmetric and Cascaded Switched Diode Multilevel Inverter Topology for Reduced Switches, DC Source and Blocked Voltage on Switches." Journal of Circuits, Systems and Computers 28, no. 04 (2019): 1950064. http://dx.doi.org/10.1142/s0218126619500646.

Full text
Abstract:
In this paper, a new asymmetric switched diode (ASD) multilevel inverter is presented for medium-voltage and high-power applications. The proposed converter consists of series connection basic unit with full-bridge inverter. In addition to this, a cascaded switched diode (CSD) structure is recommended to generate the higher number of voltage levels. Seven different algorithms are presented to determine the magnitudes of DC sources in CSD topology. To prove the advantages of proposed multilevel converter over recent multilevel converters in terms of blocking voltage, numbers of IGBTs and on-state switches are presented. To show the authority of the proposed multilevel inverter, it is simulated using MATLAB/Simulink and is experimentally tested using prototype model for 13-level inverter. Finally, various output voltage and current waveforms are shown to prove the dynamic behavior of proposed inverter.
APA, Harvard, Vancouver, ISO, and other styles
3

Fandi, Ghaeth, Famous Omar Igbinovia, Josef Tlusty, and Rateb Mahmoud. "Voltage regulation and power losses reduction in a wind farm integrated MV distribution network." Journal of Electrical Engineering 69, no. 1 (2018): 85–92. http://dx.doi.org/10.1515/jee-2018-0012.

Full text
Abstract:
Abstract A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.
APA, Harvard, Vancouver, ISO, and other styles
4

Am, Sokchea, Phok Chrin, Bunthern Kim, and Lim Phing. "A Single Channel IGBT Gate Drivers for Medium Voltage Converters." Journal of Electrical and Electronic Engineering 9, no. 1 (2021): 16. http://dx.doi.org/10.11648/j.jeee.20210901.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Filsecker, Felipe, Rodrigo Alvarez, and Steffen Bernet. "Comparison of 4.5-kV Press-Pack IGBTs and IGCTs for Medium-Voltage Converters." IEEE Transactions on Industrial Electronics 60, no. 2 (2013): 440–49. http://dx.doi.org/10.1109/tie.2012.2187417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adamowicz, Marek, and Janusz Szewczyk. "SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction." Energies 13, no. 21 (2020): 5573. http://dx.doi.org/10.3390/en13215573.

Full text
Abstract:
The design of rolling stock plays a key role in the attractiveness of the rail transport. Train design must strictly meet the requirements of rail operators to ensure high quality and cost-effective services. Semiconductor power devices made from silicon carbide (SiC) have reached a level of technology enabling their widespread use in traction power converters. SiC transistors offering energy savings, quieter operation, improved reliability and reduced maintenance costs have become the choice for the next-generation railway power converters and are quickly replacing the IGBT technology which has been used for decades. The paper describes the design and development of a novel SiC-based DC power electronic traction transformer (PETT) intended for electric multiple units (EMUs) operated in 3 kV DC rail traction. The details related to the 0.5 MVA peak power medium voltage prototype, including the electrical design of the main building blocks are presented in the first part of the paper. The second part deals with the implementation of the developed SiC-based DC PETT into a regional train operating on a 3 kV DC traction system. The experimental results obtained during the testing are presented to demonstrate the performance of the developed 3 kV DC PETT prototype.
APA, Harvard, Vancouver, ISO, and other styles
7

Mirzaee, Hesam, Ankan De, Awneesh Tripathi, and Subhashish Bhattacharya. "Design Comparison of High-Power Medium-Voltage Converters Based on a 6.5-kV Si-IGBT/Si-PiN Diode, a 6.5-kV Si-IGBT/SiC-JBS Diode, and a 10-kV SiC-MOSFET/SiC-JBS Diode." IEEE Transactions on Industry Applications 50, no. 4 (2014): 2728–40. http://dx.doi.org/10.1109/tia.2014.2301865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rasmussen, Tonny Wederberg. "Wideband Transfer Function Measurements on IGBTs for Active Gate Driver Design and Transient Studies." Proceedings of the Nordic Insulation Symposium, no. 24 (September 4, 2017). http://dx.doi.org/10.5324/nordis.v0i24.2296.

Full text
Abstract:
<p>IGBTs (Insulated Gate Bipolar Transistor) are used for power converters. For medium voltages about 3-60kV stacking of IGBTs is an interesting issue but lag of information from the data sheet makes it difficult to design active gate drivers. For these reason measurements of transfer functions has to be done for<br />different conditions in voltages and currents. In relation to this also the IGBTs reaction to applied frequencies and transients is investigated in different states. With the achieved information’s a model of the IGBT and hereby converters for transient studies can be made. With these studies parasitic components and their behavior can be included in the models. Studies onpassive components like DC capacitors have been done previoulsy. The paper describes the component theory inrelation to higher frequencies. A measurement system (10Hz -1MHz) is designed and described to being used for lab measurements in order to verify the theory. The IGBT SKM100GB123D from SEMIKRON is used for the investigation. Results from the measurements are given and analyzes with respect to the theory are done. </p>
APA, Harvard, Vancouver, ISO, and other styles
9

Madhusoodhanan, Sachin, Krishna Mainali, Awneesh Tripathi, Arun Kadavelugu, Dhaval Patel, and Subhashish Bhattacharya. "Power Loss Analysis of Medium Voltage Three-Phase Converters using 15 kV/40 A SiC N-IGBT." IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 1. http://dx.doi.org/10.1109/jestpe.2016.2587666.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT"

1

Wilson, Veas Alan Hjalmar. "Investigation of Multi-Level Neutral Point Clamped Voltage Source Converters using Isolated Gate Bipolar Transistor Modules." 2018. https://tud.qucosa.de/id/qucosa%3A33846.

Full text
Abstract:
Among the multilevel (ML)-voltage source converters (VSCs) for medium voltage (MV) and high power (HP) applications, the most used power topology is the three level (3L)-neutral point clamped (NPC)-VSC, due to its features such as common direct current (DC)-bus capability with medium point, absence of switches in series-connection, low part count, and straightforward control. The use of MV-insulated gate bipolar transistor (IGBT) modules as power switches offers further advantages like inexpensive gate drivers and survival capability after short-circuit. However, the IGBT modules have a reduced life cycle due to thermal stress generated by load cycles. Despite the advantages of the 3L-NPC-VSC, its main drawback is the uneven power loss distribution among its power devices. To address this issue and to improve other characteristics, more advanced ML converters have been developed. The 3L-active neutral point clamped (ANPC)-VSC allows an improved power loss distribution thanks to its additional IGBTs, which increase the number of feasible zero-states, but needs a loss balancing scheme to choose the proper redundant zero-state and a more complex commutation sequence between states. The 3L-neutral point piloted (NPP)-VSC improves the power loss distribution thanks to the use of series-connected switches between the output terminal and the positive and negative DC-link terminals. Other advanced power topologies with higher amount of levels include the 5L-ANPC-VSC, which has a flying capacitor per phase to generate the additional levels; and the 5L-stacked multicell converter (SMC), which needs two flying capacitors per phase. The goal of this work is to is to evaluate the performance of the aforementioned NPC-type ML converters with common DC-link, included the ones with flying capacitors, in terms of the power loss distribution and the junction temperature of the most stressed devices, which define, along with the nominal output voltage, the maximum power the converter can deliver. A second objective of this work is to describe the commutations of a MV 3L-ANPC-VSC phase leg prototype with IGBT modules, including all the intermediate switching states to generate the desired commutations.:Figures and Tables V Glossary XIII 1. Introduction 1 2. State of the art of medium voltage source converters and power semiconductors 5 2.1. Overview of medium voltage source converters 5 2.1.1. Multilevel Voltage Source Converter topologies 6 2.1.2. Application oriented basic characteristic of IGCTs and IGBTs 10 2.1.3. Market overview of ML-VSCs 11 2.2. IGBT modules for MV applications 12 2.2.1. Structure and Function 12 2.2.2. Electrical characteristics of the IGBT modules 15 2.2.3. Power losses and junction temperatures estimation 17 2.2.4. Packaging 19 2.2.5. Reliability and Life cycle of IGBT modules 21 2.2.6. Market Overview 23 2.3. Summary of Chapter 2 23 3. Structure, function and characteristics of NPC-based VSCs 25 3.1. The 3L-NPC-VSC 25 3.1.1. Power Topology 25 3.1.2. Switching states, current paths and blocking voltage distribution 26 3.1.3. Modulation of three-level inverters 28 3.1.4. Power loss distribution 32 3.1.5. “Short” and “long” commutation paths 33 3.2. The 3L-NPP-VSC 34 3.2.1. Power Topology 34 3.2.2. Switching states, current paths and blocking voltage distribution 35 3.2.3. Power Loss distribution 36 3.3. The 3L-ANPC-VSC 37 3.3.1. Power Topology 37 3.3.2. Switching states, current paths and blocking voltage distribution 38 3.3.3. Commutations and power loss distribution 39 3.3.4. Loss balancing schemes 57 3.4. The 5L-ANPC-VSC 60 3.4.1. Power Topology 60 3.4.2. Switching states, current paths and blocking voltage distribution 61 3.4.3. Commutation sequences 62 3.4.4. Power Loss distribution 70 3.4.5. Modulation and balancing strategies of capacitor voltages 70 3.5. The 5L-SMC 74 3.5.1. Power Topology 74 3.5.2. Switching states, current paths and blocking voltage distribution 75 3.5.3. Commutations and power loss distribution 78 3.5.4. Modulation and balancing strategies of capacitor voltages 80 3.6. Summary of Chapter 3 81 4. Comparative evaluation and performance of NPC-based converters 83 4.1. Motivation and goal of the comparisons 83 4.2. Basis of the comparison 83 4.2.1. Simulation scheme 85 4.2.2. Losses and thermal models for (4.5 kV, 1.2 kA) IGBT modules 86 4.2.3. Operating points, modulation, controllers and general parameters 88 4.2.4. Life cycle estimation 94 4.3. Simulation results of the 3.3 kV 3L-VSCs 97 4.3.1. Loss distribution and temperature at equal phase current 97 4.3.2. Maximum phase current 109 4.3.3. Life cycle 111 4.4. Simulation results of the 6.6 kV 5L and 3L-VSCs 115 4.4.1. Loss distribution and temperature at equal phase current 115 4.4.2. Maximum phase current 120 4.4.3. Life cycle 128 4.5. Summary of Chapter 4 132 5. Experimental investigation of the 3L-ANPC-VSC with IGBT modules 135 5.1. Goal of the work 135 5.2. Description of the 3L-ANPC-VSC test bench 136 5.2.1. Medium voltage stage 136 5.2.2. Gate drivers and digital signal handling 138 5.2.3. Measurement equipment 139 5.3. Double-pulse test and commutation sequences 140 5.3.1. Description of the double-pulse test for the 3L-ANPC-VSC 140 5.3.2. Commutation sequences for the double-pulse test 142 5.4. Commutation measurements 142 5.4.1. Switching and transition times 144 5.4.2. Type I commutations 145 5.4.3. Type I-U commutations 150 5.4.4. Type II commutations 150 5.4.5. Type III commutations 157 5.4.6. Comparison of the commutation times 157 5.4.7. Stray inductances of the “short” and “long” commutations 163 5.5. Summary of Chapter 5 167 6. Conclusions 169 Appendices 173 A. Thermal model of IGBT modules 175 A.1. General “Y” model 175 A.2. “Foster” thermal circuit 177 A.3. “Cauer” thermal circuit 178 A.4. From “Foster” to “Cauer” 179 A.5. Temperature comparison using “Foster” and “Cauer” networks 181 B. The “Rainflow” cycle counting algorithm 183 C. Description of the wind generator example 187 C.1. Simulation models 188 C.1.1. Wind turbine 188 C.1.2. Synchronous generator, grid and choke filter 189 C.1.3. Converters 189 C.2. Controllers 190 C.2.1. MPPT scheme 190 C.2.2. Pitch angle controller 191 C.2.3. Generator side VSC 192 C.2.4. Grid side VSC 193 D. 3D-surfaces of the maximum load currents in NPC-based converters 195 Bibliography 201 Bibliography 201<br>Unter den Multilevel-Spannungsumrichtern für Mittelspannungs- und Hochleistungsanwendungen ist die am häufigsten verwendete Leistungstopologie der NPC-VSC, wegen seinen Merkmalen wie die Gleichstrom-Bus fähigkeit mit mittlerem Punkt, das Fehlen von Schaltern in Reihenschaltung, eine geringe Anzahl von Bauteilen und eine einfache Steuerung. Die Verwendung von Bipolartransistor Modulen mit isolierter Gate-Elektrode als Leistungsschalter bietet weitere Vorteile wie kostengünstige Gatetreiber und Überlebensfähigkeit nach einem Kurzschluss. Die IGBT-Module haben jedoch aufgrund der durch Lastzyklen erzeugten thermischen Belastung eine verkürzte Lebensdauer. Trotz der Vorteile des 3L-NPC-VSC ist der Hauptnachteil die ungleichmäßige Verteilung der Leistungsverluste zwischen den Leistungsgeräten. Um dieses Problem zu beheben und andere Eigenschaften zu verbessern, wurden fortgeschrittenere ML-Konverter entwickelt. Das 3L-ANPC-VSC ermöglicht dank seiner zusätzlichen IGBTs eine verbesserte Verlustleistungsverteilung, wodurch die Anzahl der möglichen Null-Zustände erhöht wird, es ist jedoch ein Verlustausgleichsschema erforderlich, um den richtigen redundanten Null-Zustand, und benötigt auszuwählende komplexere Kommutierungssequenz zwischen Zuständen. Das 3L-NPP-VSC verbessert die Verlustleistungsverteilung durch die Verwendung von in Reihe geschalteten Schaltern zwischen der Ausgangsklemme und den positiven und negativen Zwischenkreisklemmen. Andere fortgeschrittene Leistungstopologien mit einer höheren Anzahl von Stufen umfassen den 5L-ANPC-VSC, der pro Phase einen fliegenden Kondensator zur Erzeugung der zusätzlichen Stufen aufweist; und den 5L-SMC, der pro Phase zwei fliegende Kondensatoren benötigt. Das Ziel dieser Arbeit ist es, die Leistung der oben genannten NPC-VSC, einschließlich der mit fliegenden Kondensatoren, hinsichtlich der Verlustleistungsverteilung und der Sperrschichttemperatur der am stärksten beanspruchten Geräte zu bewerten. Diese definieren zusammen mit der Nennausgangsspannung die maximale Leistung, die der Umrichter liefern kann. Ein zweites Ziel dieser Arbeit ist die Beschreibung der Kommutierungen eines MV 3L-ANPC-VSC- Prototyps mit IGBT-Modulen einschließlich aller Zwischenschaltzustände, um die gewünschten Kommutierungen zu erzeugen.:Figures and Tables V Glossary XIII 1. Introduction 1 2. State of the art of medium voltage source converters and power semiconductors 5 2.1. Overview of medium voltage source converters 5 2.1.1. Multilevel Voltage Source Converter topologies 6 2.1.2. Application oriented basic characteristic of IGCTs and IGBTs 10 2.1.3. Market overview of ML-VSCs 11 2.2. IGBT modules for MV applications 12 2.2.1. Structure and Function 12 2.2.2. Electrical characteristics of the IGBT modules 15 2.2.3. Power losses and junction temperatures estimation 17 2.2.4. Packaging 19 2.2.5. Reliability and Life cycle of IGBT modules 21 2.2.6. Market Overview 23 2.3. Summary of Chapter 2 23 3. Structure, function and characteristics of NPC-based VSCs 25 3.1. The 3L-NPC-VSC 25 3.1.1. Power Topology 25 3.1.2. Switching states, current paths and blocking voltage distribution 26 3.1.3. Modulation of three-level inverters 28 3.1.4. Power loss distribution 32 3.1.5. “Short” and “long” commutation paths 33 3.2. The 3L-NPP-VSC 34 3.2.1. Power Topology 34 3.2.2. Switching states, current paths and blocking voltage distribution 35 3.2.3. Power Loss distribution 36 3.3. The 3L-ANPC-VSC 37 3.3.1. Power Topology 37 3.3.2. Switching states, current paths and blocking voltage distribution 38 3.3.3. Commutations and power loss distribution 39 3.3.4. Loss balancing schemes 57 3.4. The 5L-ANPC-VSC 60 3.4.1. Power Topology 60 3.4.2. Switching states, current paths and blocking voltage distribution 61 3.4.3. Commutation sequences 62 3.4.4. Power Loss distribution 70 3.4.5. Modulation and balancing strategies of capacitor voltages 70 3.5. The 5L-SMC 74 3.5.1. Power Topology 74 3.5.2. Switching states, current paths and blocking voltage distribution 75 3.5.3. Commutations and power loss distribution 78 3.5.4. Modulation and balancing strategies of capacitor voltages 80 3.6. Summary of Chapter 3 81 4. Comparative evaluation and performance of NPC-based converters 83 4.1. Motivation and goal of the comparisons 83 4.2. Basis of the comparison 83 4.2.1. Simulation scheme 85 4.2.2. Losses and thermal models for (4.5 kV, 1.2 kA) IGBT modules 86 4.2.3. Operating points, modulation, controllers and general parameters 88 4.2.4. Life cycle estimation 94 4.3. Simulation results of the 3.3 kV 3L-VSCs 97 4.3.1. Loss distribution and temperature at equal phase current 97 4.3.2. Maximum phase current 109 4.3.3. Life cycle 111 4.4. Simulation results of the 6.6 kV 5L and 3L-VSCs 115 4.4.1. Loss distribution and temperature at equal phase current 115 4.4.2. Maximum phase current 120 4.4.3. Life cycle 128 4.5. Summary of Chapter 4 132 5. Experimental investigation of the 3L-ANPC-VSC with IGBT modules 135 5.1. Goal of the work 135 5.2. Description of the 3L-ANPC-VSC test bench 136 5.2.1. Medium voltage stage 136 5.2.2. Gate drivers and digital signal handling 138 5.2.3. Measurement equipment 139 5.3. Double-pulse test and commutation sequences 140 5.3.1. Description of the double-pulse test for the 3L-ANPC-VSC 140 5.3.2. Commutation sequences for the double-pulse test 142 5.4. Commutation measurements 142 5.4.1. Switching and transition times 144 5.4.2. Type I commutations 145 5.4.3. Type I-U commutations 150 5.4.4. Type II commutations 150 5.4.5. Type III commutations 157 5.4.6. Comparison of the commutation times 157 5.4.7. Stray inductances of the “short” and “long” commutations 163 5.5. Summary of Chapter 5 167 6. Conclusions 169 Appendices 173 A. Thermal model of IGBT modules 175 A.1. General “Y” model 175 A.2. “Foster” thermal circuit 177 A.3. “Cauer” thermal circuit 178 A.4. From “Foster” to “Cauer” 179 A.5. Temperature comparison using “Foster” and “Cauer” networks 181 B. The “Rainflow” cycle counting algorithm 183 C. Description of the wind generator example 187 C.1. Simulation models 188 C.1.1. Wind turbine 188 C.1.2. Synchronous generator, grid and choke filter 189 C.1.3. Converters 189 C.2. Controllers 190 C.2.1. MPPT scheme 190 C.2.2. Pitch angle controller 191 C.2.3. Generator side VSC 192 C.2.4. Grid side VSC 193 D. 3D-surfaces of the maximum load currents in NPC-based converters 195 Bibliography 201 Bibliography 201
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT"

1

Hakim, Denoun, Benyahia Nabil, Zaouia Mustapha, Benamrouche Nacereddine, Salah Haddad, and Sadek Ait Mamar. "Modelling and Realisation of a Three-Level PWM Inverter Using a DSP Controller to Feed an Asynchronous Machine." In Handbook of Research on Advanced Intelligent Control Engineering and Automation. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7248-2.ch025.

Full text
Abstract:
Multilevel inverters have seen an increasing popularity in the last few years for medium- and high-voltage applications. The most popular has been the three-level neutral clamped inverter. Multilevel inverters synthesize output voltage from more than two voltage levels. Thus, the output signal spectrum is significantly improved in comparison with the classical two-level converters. This chapter discusses modelling and control of a Neutral Point Clamped (NPC) inverter which operates with the PWM switching pattern using a DSP. The mathematical model of the NPC inverter is carried out using conversion and connection functions for an easier understanding of the system operation. Simulation results using MATLAB program are reported, and it is shown that the performances obtained for driving an asynchronous motor using this inverter are very promising. Finally, analysis of the theoretical and the experimental results is carried out in order to validate the effectiveness of the proposed control solution.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multilevel-Converters, NPC-converters, Medium Voltage Converters, IGBT"

1

Rahman, Muhammad Foyazur, Payam Niknejad, and M. R. Barzegaran. "Comparing the performance of Si IGBT and SiC MOSFET switches in modular multilevel converters for medium voltage PMSM speed control." In 2018 IEEE Texas Power and Energy Conference (TPEC). IEEE, 2018. http://dx.doi.org/10.1109/tpec.2018.8312046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferreira, Victor N., Gabriel A. Mendonca, Anderson V. Rocha, Robson S. Resende, and Braz J. Cardoso Filho. "Medium voltage IGBT-based converters in mine hoist systems." In 2016 IEEE Industry Applications Society Annual Meeting. IEEE, 2016. http://dx.doi.org/10.1109/ias.2016.7731919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alvarez, R., F. Filsecker, and S. Bernet. "Characterization of a new 4.5 kV press pack SPT+ IGBT for medium voltage converters." In 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009. IEEE, 2009. http://dx.doi.org/10.1109/ecce.2009.5316130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Madhusoodhanan, Sachin, Krishna Mainali, Awneesh Tripathi, Arun Kadavelugu, Dhaval Patel, and Subhashish Bhattacharya. "Thermal design considerations for medium voltage power converters with 15 kV SiC IGBTs." In 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2015. http://dx.doi.org/10.1109/pedg.2015.7223105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoffmann, Holger, and Bernhard Piepenbreier. "High voltage IGBTs and medium frequency transformer in DC-DC converters for railway applications." In 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2010). IEEE, 2010. http://dx.doi.org/10.1109/speedam.2010.5542109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mirzaee, Hesam, Ankan De, Awneesh Tripathi, and Subhashish Bhattacharya. "Design comparison of high power medium-voltage converters based on 6.5kV Si-IGBT/Si-PiN diode, 6.5kV Si-IGBT/SiC-JBS diode, and 10kV SiC MOSFET/SiC-JBS diode." In 2011 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2011. http://dx.doi.org/10.1109/ecce.2011.6064090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography