Academic literature on the topic 'Multilinear polynomial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multilinear polynomial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multilinear polynomial"
Šiljak, Dragoslav D., and Matija D. Šiljak. "Nonnegativity of uncertain polynomials." Mathematical Problems in Engineering 4, no. 2 (1998): 135–63. http://dx.doi.org/10.1155/s1024123x98000763.
Full textGhosal, Purnata, and B. V. Raghavendra Rao. "On Proving Parameterized Size Lower Bounds for Multilinear Algebraic Models." Fundamenta Informaticae 177, no. 1 (December 18, 2020): 69–93. http://dx.doi.org/10.3233/fi-2020-1980.
Full textGORDIENKO, ALEXEY, and GEOFFREY JANSSENS. "ℤSn-MODULES AND POLYNOMIAL IDENTITIES WITH INTEGER COEFFICIENTS." International Journal of Algebra and Computation 23, no. 08 (December 2013): 1925–43. http://dx.doi.org/10.1142/s0218196713500513.
Full textLatyshev, V. N. "Combinatorial generators of the multilinear polynomial identities." Journal of Mathematical Sciences 149, no. 2 (February 2008): 1107–12. http://dx.doi.org/10.1007/s10958-008-0049-5.
Full textGiambruno, Antonio, and Mikhail Zaicev. "Codimension growth of central polynomials of Lie algebras." Forum Mathematicum 32, no. 1 (January 1, 2020): 201–6. http://dx.doi.org/10.1515/forum-2019-0130.
Full textCHEN, SHENSHI, YAQING CHEN, and QUANHAI YANG. "TOWARD RANDOMIZED TESTING OF q-MONOMIALS IN MULTIVARIATE POLYNOMIALS." Discrete Mathematics, Algorithms and Applications 06, no. 02 (March 19, 2014): 1450016. http://dx.doi.org/10.1142/s1793830914500165.
Full textBelaada, Abdelaziz, Khalil Saadi, and Abdelmoumen Tiaiba. "On the Composition Ideals of Schatten Class Type Mappings." Journal of Mathematics 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/3492934.
Full textChillara, Suryajith. "On Computing Multilinear Polynomials Using Multi- r -ic Depth Four Circuits." ACM Transactions on Computation Theory 13, no. 3 (September 30, 2021): 1–21. http://dx.doi.org/10.1145/3460952.
Full textPınar Eroglu, Münevver, and Nurcan Argaç. "On Identities with Composition of Generalized Derivations." Canadian Mathematical Bulletin 60, no. 4 (December 1, 2017): 721–35. http://dx.doi.org/10.4153/cmb-2016-072-4.
Full textFilippis, Vincenzo De, Onofrio Mario Di Vincenzo, and Ching-Yueh Pan. "Quadratic Central Differential Identities on a Multilinear Polynomial." Communications in Algebra 36, no. 10 (October 13, 2008): 3671–81. http://dx.doi.org/10.1080/00927870802157962.
Full textDissertations / Theses on the topic "Multilinear polynomial"
Almutairi, Najat Bandar. "ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1454279474.
Full textMoura, Fernanda Ribeiro de. "Ideais algebricos de aplicações multilineares e polinômios homogêneos." Universidade Federal de Uberlândia, 2014. https://repositorio.ufu.br/handle/123456789/16812.
Full textThe main purpose of this dissertation is the study of ideals of multilinear mappings and homogeneous polynomials between linear spaces. By an ideal we mean a class that is stable under the composition with linear operators. First we study multilinear mappings and spaces of multilinear mappings. We also show how to obtain, from a given multilinear mapping, other multilinear mappings with degrees of multilinearity greater than, equal to or smaller than the degree of the original multilinear mapping. Next we study homogeneous polynomials and spaces of homogeneous polynomials, and we also show how to obtain, from a given n-homogeneous polynomial, other polynomials with degrees of homogeneity greater than, equal to or smaller than the degree of the original polynomial. Next we study ideals of multilinear mappings, or multi-ideals, and ideals of homogeneous polynomial, or polynomial ideals, giving several examples and presenting methods to generated multi-ideals and polynomial ideals from a given operator ideal. Finally we dene and give several examples of coherent multi-ideals and coherent polynomial ideals.
O principal objetivo desta dissertação e estudar os ideais de aplicações multilineares e polinômios homogêneos entre espaços vetoriais. Por um ideal entendemos uma classe de aplicações que e estavel atraves da composição com operadores lineares. Primeiramente estudamos as aplicações multilineares e os espaços de aplicações multilineares. Mostramos tambem como obter, a partir de uma aplicação multilinear dada, outras aplicações com graus de multilinearidade maiores, iguais ou menores que o da aplicação original. Em seguida estudamos os polinômios homogêneos e os espacos de polinômios homogêneos, e mostramos que, a partir de um polinômio n-homogêneo, tambem podemos construir novos polinômios homogêneos com graus de homogeneidade maiores, iguais ou menores que n. Posteriormente estudamos os ideais de aplicações multilineares, ou multi-ideais, e os ideais de polinômios homogêneos, exibindo varios exemplos e apresentando metodos para se obter um multi-ideais, ou ideais de polinômios, a partir de ideais de operadores lineares dados. Por m, denimos e exibimos varios exemplos de multi-ideais coerentes e de ideais coerentes de polinômios.
Mestre em Matemática
Sarantopoulos, I. C. "Polynomials and multilinear mappings in Banach spaces." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376057.
Full textRonchim, Victor dos Santos. "Extensões de polinômios e de funções analíticas em espaços de Banach." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-101547/.
Full textThe main purpose of this work is to study extensions of multilinear mappings, homogeneous polynomials and analytic functions between Banach Spaces. In this way, we rely on important works on the subject. Firstly we present the Arens-product for Banach algebras, the Aron-Berner and Davie-Gamelin extensions for multilinear mappings and we prove that all these extensions are the same. From these results, we present an extension for homogeneous polynomials and the Davie-Gamelin theorem which asserts that, as in the case of multilinear mappings, the polynomial extension is norm-preserving and, as a consequence of this theorem, we present a generalization of the Goldstine theorem. After that we study regular and symmetrically regular Banach spaces which are properties related to the uniqueness of the extension and are defined in the setting of weakly compact linear operators K^w(E, F) . Lastly, we present the extension of a function of H_b(E) to one in H_b(E\'\') and the result, according to Ignacio Zalduendo, which characterizes this extension in terms of weak-star continuity of the first order differential operator.
Torres, Ewerton Ribeiro. "Hiper-ideais de aplicações multilineares e polinômios homogêneos em espaços de Banach." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05092016-143504/.
Full textIn this work we introduce and develop the theory of hyper-ideals of multilinear mappings and homogeneous polynomials between Banach spaces. The main idea is to refine the concepts of multi-ideal and of ideal of polynomials with the purpose of exploring deeply the nonlinear nature of the underlying mappings. To do this we take the ideal theory of linear operators, multilinear mappings and homogeneous polynomials, developed from the works of Pietsch, both in the linear and nonlinear cases, as a reference. We prove general results for hyper-ideals, provide a number of illustrative examples, and develop methods to generate hyper-ideals of multilinear mappings, as well as of hyper-ideals of homogeneous polynomials.
BERNARDINO, Adriano Thiago Lopes. "Contribuições à teoria multilinear de operadores absolutamente somantes." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17977.
Full textMade available in DSpace on 2016-10-11T18:36:34Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Adriano Thiago.pdf: 1085326 bytes, checksum: 498b2bcfd47961466edce3360e11a858 (MD5) Previous issue date: 2016-06-17
Neste trabalho estudamos algumas extens˜oes do conceito de operadores multilineares absolutamente somantes, generalizamos alguns resultados conhecidos e respondemos parcialmente alguns problemas abertos. Para a classe das aplica¸c˜oes absolutamente (p; q; r)-somantes, obtemos alguns resultados de coincidˆencia e inclus˜ao e mostramos que o ideal de polinˆomios absolutamente (p; q; r)-somantes n˜ao ´e corente, de acordo com a no¸c˜ao de ideais coerentes devida a D. Carando, V. Dimant e S. Muro. Para contornar esta falha, introduzimos o conceito de aplica¸c˜oes m´ultiplo (p; q; r)-somantes e mostramos que, com essa nova abordagem, o ideal de polinˆomios m´ultiplo (p; q; r)- somantes ´e coerente e compat´ıvel com o ideal de operadores lineares absolutamente (p; q; r)-somantes.
In this work we investigate some extensions of the concept of absolutely summing operators, generalize some known results and provide partial answers to some open questions. For the class of absolutely (p; q; r)-summing mappings we obtain some inclusion and coincidence results and show that the ideal of absolutely (p; q; r)-summing polynomials is not coherent, according to the notion of coherent ideals due to D. Carando, V. Dimant and S. Muro. In order to bypass this deficiency, we introduce the concept of multiple (p; q; r)-summing multilinear and polynomial operators and show that, with this new approach, the ideal of multiple (p; q; r)-summing polynomials is coherent and compatible with the ideal of absolutely (p; q; r)-summing operators.
Kuo, Po Ling. "Operadores de extensão de aplicações multilineares ou polinomios homogeneos." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307329.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T22:02:35Z (GMT). No. of bitstreams: 1 Kuo_PoLing_D.pdf: 378648 bytes, checksum: 3724407371cc36985fd2257b4bc5fe8c (MD5) Previous issue date: 2007
Resumo: Este trabalho está dedicado ao estudo dos operadores de Nicodemi, introduzidos em [7] a partir de uma idéia em [12]. Os operadores de Nicodemi levam aplicações multilineares (resp. polinômios homogêneos) de um espaço de Banach E em aplicações multilineares (resp. polinômios homogêneos) em um espaço de Banach F. O nosso primeiro objetivo é encontrar condições para que os operadores de Nicodemi preservem certos tipos de aplicações multilineares (resp. polinômios homogêneos). Em particular estudamos a preservação de aplicações multilineares simétricas, de tipo finito, nucleares, compactas ou fracamente compactas. O segundo objetivo é encontrar condições para que, se os espaços duais E¿ e F¿ são isomorfos, os espaços de aplicações multilineares (resp. polinômios homogêneos) em E e F sejam isomorfos também. Estudamos também o problema correspondente para os espaços de aplicações multilineares (resp. polinômios homogêneos) de um determinado tipo, como por exemplo, de tipo finito, nuclear, compacto ou fracamente compacto
Abstract: This work is devoted to studying the Nicodemi operators, introduced in [7], following an idea in [12]. The Nicodemi operators map multilinear mappings (resp. homogeneous polynomials) on a Banach spaces E into multilinear mappings (resp. homogeneous polynomials) on a Banach spaces F. Our first objective is to find conditions under which the Nicodemi operators preserve certain types of multilinear mappings (resp. homogeneous polynomials). In particular we examine the preservation of the multilinear mappings that are symmetric, of finite type, nuclear, compact or weakly compact. Our second objective is tofind conditions under which, whenever the dual spaces E¿ and F¿ are isomorphic, the spaces of multilinear mappings (resp. homogeneous polynomials) on E and F are isomorphic as well. We also examine the corresponding problem for the spaces of multilinear mappings (resp. homogeneous polynomials) of a certain type, for instance of finite, nuclear, compact or weakly compact type
Doutorado
Analise Funcional
Doutor em Matemática
Reuss, Thomas. "The determinant method and applications." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:5b49acc6-bc16-45bf-972a-6dff1977db02.
Full textMaia, Mariana de Brito. "Um índice de somabilidade para operadores entre espaços de Banach." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9837.
Full textMade available in DSpace on 2018-05-03T12:04:50Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 1304658 bytes, checksum: e4e550beeae66c0949fd33c9fa86db45 (MD5) Previous issue date: 2017-06-09
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Abstract indisponível neste campo - O PDF foi entregue protegido para cópia
Resumo indisponível neste campo - O PDF foi entregue protegido para cópia
Nascimento, Lucas de Carvalho. "Um índice de somabilidade para pares de espaços de Banach." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9814.
Full textMade available in DSpace on 2018-04-23T21:42:23Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 889863 bytes, checksum: feeec177f9d947c98727574b765d8acb (MD5) Previous issue date: 2017-07-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we study the notion of index of summability for pairs of Banach spaces. This index plays the role of a kind of “measure” of how the space of m-homogeneous polynomials from E to F (or the space of multilinear operators of E1×···×Em to F) are far from being the space of absolutely summing m-homogeneous polynomials (or with the space of multiple summing multilinear operators). In some cases the optimal index of summability is presented.
Neste trabalho, estudamos a noção de índice de somabilidade para pares de espaços de Banach. Esse índice desempenha o papel de um tipo de \medida" de como o espaço dos polinômios m-homogêneos de E em F (ou o espaço dos operadores multilineares de E Em em F) está longe de coincidir com o espaço dos polinômios m- homogêneos absolutamente somantes (ou com o espaço dos operadores multilineares multiplo somantes). Em alguns casos o índice ótimo de somabilidade e apresentado. Palavras-chave: Polinômios absolutamente somantes, operadores multilineares absolutamente somantes, espaços de Banach, índice de somabilidade.
Books on the topic "Multilinear polynomial"
Galiffa, Daniel J. On the Higher-Order Sheffer Orthogonal Polynomial Sequences. New York, NY: Springer New York, 2013.
Find full textSarantopoulos, Ioannis C. Polynomials and multilinear mappings in Banach spaces. Uxbridge: Brunel University, 1986.
Find full textNorman, Christopher. Finitely Generated Abelian Groups and Similarity of Matrices over a Field. London: Springer London, 2012.
Find full textRandom Matrices AMS Short Course. Modern aspects of random matrix theory: AMS Short Course, Random Matrices, January 6-7, 2013, San Diego, California. Edited by Vu, Van, 1970- editor of compilation. Providence, Rhode Island: American Mathematical Society, 2014.
Find full text1962-, Sturmfels Bernd, ed. Introduction to tropical geometry. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBard, Gregory V. Sage for undergraduates. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textInternational Conference on p-Adic Functional Analysis (11th 2010 Université Blaise Pascal). Advances in non-Archimedean analysis: Eleventh International Conference on p-Adic Functional Analysis, July 5-9 2010, Université Blaise Pascal, Clermont-Ferrand, France. Edited by Araujo-Gomez Jesus 1965-, Diarra B. (Bertin) 1944-, and Escassut Alain. Providence, R.I: American Mathematical Society, 2011.
Find full textGaliffa, Daniel J. On the Higher-Order Sheffer Orthogonal Polynomial Sequences. Springer, 2013.
Find full textNorman, Christopher. Finitely Generated Abelian Groups and Similarity of Matrices over a Field. Springer, 2012.
Find full textBook chapters on the topic "Multilinear polynomial"
Ito, Kimihito, and Akihiro Yamamoto. "Polynomial-time MAT learning of multilinear logic programs." In Lecture Notes in Computer Science, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57369-0_28.
Full textKwapień, Stanisław, and Wojbor A. Woyczyński. "Random Multilinear Forms in Independent Random Variables and Polynomial Chaos." In Random Series and Stochastic Integrals: Single and Multiple, 147–89. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0425-1_7.
Full textZhang, Liang Feng, and Reihaneh Safavi-Naini. "Private Outsourcing of Polynomial Evaluation and Matrix Multiplication Using Multilinear Maps." In Cryptology and Network Security, 329–48. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02937-5_18.
Full textMatušů, Radek, and Bilal Şenol. "Application of Value Set Concept to Ellipsoidal Polynomial Families with Multilinear Uncertainty Structure." In Computational Statistics and Mathematical Modeling Methods in Intelligent Systems, 81–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31362-3_9.
Full textChen, Zhixiang, and Bin Fu. "Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials." In Combinatorial Optimization and Applications, 309–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17458-2_26.
Full textKraus, F. J., M. Mansour, and B. D. O. Anderson. "Robust Stability of Polynomials with Multilinear Parameter Dependence." In Robustness in Identification and Control, 263–80. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9552-6_17.
Full textFilippis, Vincenzo De, Giovanni Scudo, and Feng Wei. "b-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings." In Springer INdAM Series, 109–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63111-6_7.
Full textDhara, Basudeb. "Generalized Derivations with Nilpotent Values on Multilinear Polynomials in Prime Rings." In Algebra and its Applications, 307–19. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1651-6_18.
Full textEmelyanov, Pavel, and Denis Ponomaryov. "On a Polytime Factorization Algorithm for Multilinear Polynomials over $$\mathbb {F}_2$$." In Developments in Language Theory, 164–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99639-4_11.
Full text"Upper bounds using multilinear polynomials." In The Student Mathematical Library, 127–36. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/stml/086/21.
Full textConference papers on the topic "Multilinear polynomial"
Anderson, Matthew, Dieter van Melkebeek, and Ilya Volkovich. "Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae." In 2011 IEEE Annual Conference on Computational Complexity (CCC). IEEE, 2011. http://dx.doi.org/10.1109/ccc.2011.18.
Full textVaccari, David A. "Multivariate Polynomial Response Surface Analysis - Combining Advantages of Multilinear Regression and Artificial Neural Networks." In Modelling, Simulation and Identification. Calgary,AB,Canada: ACTAPRESS, 2018. http://dx.doi.org/10.2316/p.2018.857-021.
Full textChen, Weining, and Ian R. Petersen. "An easily testable sufficient condition for the robust stability of multilinear uncertain polynomials." In 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082723.
Full text