Journal articles on the topic 'Multimodal omics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multimodal omics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lobato-Delgado, Barbara, Torres Blanca María Priego, and Morillo Daniel Sanchez. "Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis." Cancers 14, no. 13 (2022): 3215. https://doi.org/10.3390/cancers14133215.
Full textVermeulen, I., T. Dankcer, G. Hoogland, et al. "Multimodal spatial omics in human focal epilepsy." Brain and Spine 2 (2022): 101583. http://dx.doi.org/10.1016/j.bas.2022.101583.
Full textEteleeb, Abdallah M., Brenna C. Novotny, Carolina Soriano Tarraga, et al. "Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer’s disease." PLOS Biology 22, no. 4 (2024): e3002607. http://dx.doi.org/10.1371/journal.pbio.3002607.
Full textXu, Chi, Denghui Liu, Lei Zhang, et al. "AutoOmics: New multimodal approach for multi-omics research." Artificial Intelligence in the Life Sciences 1 (December 2021): 100012. http://dx.doi.org/10.1016/j.ailsci.2021.100012.
Full textZhu, Chenxu, Sebastian Preissl, and Bing Ren. "Single-cell multimodal omics: the power of many." Nature Methods 17, no. 1 (2020): 11–14. http://dx.doi.org/10.1038/s41592-019-0691-5.
Full textLee, Yoonji, Mingyu Lee, Yoojin Shin, Kyuri Kim, and Taejung Kim. "Spatial Omics in Clinical Research: A Comprehensive Review of Technologies and Guidelines for Applications." International Journal of Molecular Sciences 26, no. 9 (2025): 3949. https://doi.org/10.3390/ijms26093949.
Full textBenkirane, Hakim, Maria Vakalopoulou, David Planchard, et al. "Multimodal CustOmics: A unified and interpretable multi-task deep learning framework for multimodal integrative data analysis in oncology." PLOS Computational Biology 21, no. 6 (2025): e1013012. https://doi.org/10.1371/journal.pcbi.1013012.
Full textMaji, Pradipta, and Ankita Mandal. "Multimodal Omics Data Integration Using Max Relevance--Max Significance Criterion." IEEE Transactions on Biomedical Engineering 64, no. 8 (2017): 1841–51. http://dx.doi.org/10.1109/tbme.2016.2624823.
Full textYang, Tao, Haohao Li, Yanlei Kang, and Zhong Li. "MMFSyn: A Multimodal Deep Learning Model for Predicting Anticancer Synergistic Drug Combination Effect." Biomolecules 14, no. 8 (2024): 1039. http://dx.doi.org/10.3390/biom14081039.
Full textUzunangelov, Vladislav, Christopher K. Wong, and Joshua M. Stuart. "Accurate cancer phenotype prediction with AKLIMATE, a stacked kernel learner integrating multimodal genomic data and pathway knowledge." PLOS Computational Biology 17, no. 4 (2021): e1008878. http://dx.doi.org/10.1371/journal.pcbi.1008878.
Full textHayes, C. Nelson, Hikaru Nakahara, Atsushi Ono, Masataka Tsuge, and Shiro Oka. "From Omics to Multi-Omics: A Review of Advantages and Tradeoffs." Genes 15, no. 12 (2024): 1551. http://dx.doi.org/10.3390/genes15121551.
Full textWehrle, E. "OMICS-BASED PRECLINICAL MODELS OF MUSCULOSKELETAL REGENERATION." Orthopaedic Proceedings 106-B, SUPP_2 (2024): 55. http://dx.doi.org/10.1302/1358-992x.2024.2.055.
Full textMurai, Toshiyuki, and Satoru Matsuda. "Integrated Multimodal Omics and Dietary Approaches for the Management of Neurodegeneration." Epigenomes 7, no. 3 (2023): 20. http://dx.doi.org/10.3390/epigenomes7030020.
Full textFujita, Suguru, Yasuaki Karasawa, Ken-ichi Hironaka, Y. h. Taguchi, and Shinya Kuroda. "Features extracted using tensor decomposition reflect the biological features of the temporal patterns of human blood multimodal metabolome." PLOS ONE 18, no. 2 (2023): e0281594. http://dx.doi.org/10.1371/journal.pone.0281594.
Full textMandal, Ankita, and Pradipta Maji. "FaRoC: Fast and Robust Supervised Canonical Correlation Analysis for Multimodal Omics Data." IEEE Transactions on Cybernetics 48, no. 4 (2018): 1229–41. http://dx.doi.org/10.1109/tcyb.2017.2685625.
Full textDong, Yixing, and Raphael Gottardo. "An approach for integrating multimodal omics data into sparse and interpretable models." Cell Reports Methods 4, no. 2 (2024): 100718. http://dx.doi.org/10.1016/j.crmeth.2024.100718.
Full textDavitavyan, Suren, Gevorg Martirosyan, Gohar Mkrtchyan, et al. "Integrated analysis of -omic landscapes in breast cancer subtypes." F1000Research 13 (June 3, 2024): 564. http://dx.doi.org/10.12688/f1000research.148778.1.
Full textLi, Wei, Binchun Liu, Weiqian Wang, et al. "Lung Cancer Stage Prediction Using Multi-Omics Data." Computational and Mathematical Methods in Medicine 2022 (July 16, 2022): 1–10. http://dx.doi.org/10.1155/2022/2279044.
Full textIsavand, Pouria, Sara Sadat Aghamiri, and Rada Amin. "Applications of Multimodal Artificial Intelligence in Non-Hodgkin Lymphoma B Cells." Biomedicines 12, no. 8 (2024): 1753. http://dx.doi.org/10.3390/biomedicines12081753.
Full textZhang, R., X. Shen, L. Huang, S. T. Feng, R. Mao, and X. Li. "P0553 MRI neurophenotype reflecting brain-gut interactions to predict intestinal disease progression in patients with Crohn’s disease." Journal of Crohn's and Colitis 19, Supplement_1 (2025): i1119. https://doi.org/10.1093/ecco-jcc/jjae190.0727.
Full textYang, Zi-Yi, Liang-Yong Xia, Hui Zhang, and Yong Liang. "MSPL: Multimodal Self-Paced Learning for Multi-Omics Feature Selection and Data Integration." IEEE Access 7 (2019): 170513–24. http://dx.doi.org/10.1109/access.2019.2955958.
Full textGurke, Robert, Annika Bendes, John Bowes, et al. "Omics and Multi-Omics Analysis for the Early Identification and Improved Outcome of Patients with Psoriatic Arthritis." Biomedicines 10, no. 10 (2022): 2387. http://dx.doi.org/10.3390/biomedicines10102387.
Full textDisselhorst, Jonathan A., Marcel A. Krueger, S. M. Minhaz Ud-Dean, et al. "Linking imaging to omics utilizing image-guided tissue extraction." Proceedings of the National Academy of Sciences 115, no. 13 (2018): E2980—E2987. http://dx.doi.org/10.1073/pnas.1718304115.
Full textDanila, Bredikhin, Kats Ilia, and Stegle Oliver. "Muon: multimodal omics analysis framework." October 8, 2021. https://doi.org/10.5281/zenodo.5776349.
Full textLi, Bingjun, and Sheida Nabavi. "A multimodal graph neural network framework for cancer molecular subtype classification." BMC Bioinformatics 25, no. 1 (2024). http://dx.doi.org/10.1186/s12859-023-05622-4.
Full textMeng, Dian, Yu Feng, Kaishen Yuan, et al. "scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics." Briefings in Bioinformatics 26, no. 1 (2024). https://doi.org/10.1093/bib/bbaf010.
Full textLim, Jongsu, Chanho Park, Minjae Kim, Hyukhee Kim, Junil Kim, and Dong-Sung Lee. "Advances in single-cell omics and multiomics for high-resolution molecular profiling." Experimental & Molecular Medicine, March 5, 2024. http://dx.doi.org/10.1038/s12276-024-01186-2.
Full textLiu, Chunlei, Hao Huang, and Pengyi Yang. "Multi-task learning from multimodal single-cell omics with Matilda." Nucleic Acids Research, March 13, 2023. http://dx.doi.org/10.1093/nar/gkad157.
Full textBredikhin, Danila, Ilia Kats, and Oliver Stegle. "MUON: multimodal omics analysis framework." Genome Biology 23, no. 1 (2022). http://dx.doi.org/10.1186/s13059-021-02577-8.
Full textEllis, Dorothy, Arkaprava Roy, and Susmita Datta. "Clustering single-cell multimodal omics data with jrSiCKLSNMF." Frontiers in Genetics 14 (June 9, 2023). http://dx.doi.org/10.3389/fgene.2023.1179439.
Full textMataraso, Samson J., Camilo A. Espinosa, David Seong, et al. "A machine learning approach to leveraging electronic health records for enhanced omics analysis." Nature Machine Intelligence, January 16, 2025. https://doi.org/10.1038/s42256-024-00974-9.
Full textZhou, Yuan, Pei Geng, Shan Zhang, et al. "Multimodal functional deep learning for multiomics data." Briefings in Bioinformatics 25, no. 5 (2024). http://dx.doi.org/10.1093/bib/bbae448.
Full textLi, Yunjin, Lu Ma, Duojiao Wu, and Geng Chen. "Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine." Briefings in Bioinformatics, March 27, 2021. http://dx.doi.org/10.1093/bib/bbab024.
Full textZhang, Chengming, Yiwen Yang, Shijie Tang, Kazuyuki Aihara, Chuanchao Zhang, and Luonan Chen. "Contrastively generative self-expression model for single-cell and spatial multimodal data." Briefings in Bioinformatics, July 28, 2023. http://dx.doi.org/10.1093/bib/bbad265.
Full textZuo, Chunman, Junchao Zhu, Jiawei Zou, and Luonan Chen. "Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data." Clinical and Translational Medicine 15, no. 5 (2025). https://doi.org/10.1002/ctm2.70331.
Full textBai, Dongsheng, and Chenxu Zhu. "Single-cell technologies for multimodal omics measurements." Frontiers in Systems Biology 3 (April 21, 2023). http://dx.doi.org/10.3389/fsysb.2023.1155990.
Full textTabakhi, Sina, Mohammod Naimul Islam Suvon, Pegah Ahadian, and Haiping Lu. "Multimodal Learning for Multi-Omics: A Survey." World Scientific Annual Review of Artificial Intelligence, December 16, 2022. http://dx.doi.org/10.1142/s2811032322500047.
Full textYu, Lijia, Chunlei Liu, Jean Yee Hwa Yang, and Pengyi Yang. "Ensemble deep learning of embeddings for clustering multimodal single-cell omics data." Bioinformatics, June 14, 2023. http://dx.doi.org/10.1093/bioinformatics/btad382.
Full textAng, Guo, Chen Zhiyu, Ma Yinzhong, et al. "Multimodal Coregistration and Fusion between Spatial Metabol-omics and Biomedical Imaging." March 6, 2023. https://doi.org/10.5281/zenodo.7700528.
Full textFan, Ziling, Zhangqi Jiang, Hengyu Liang, and Chao Han. "Pancancer survival prediction using a deep learning architecture with multimodal representation and integration." Bioinformatics Advances, January 23, 2023. http://dx.doi.org/10.1093/bioadv/vbad006.
Full textXu, Jing, De‐Shuang Huang, and Xiujun Zhang. "scmFormer Integrates Large‐Scale Single‐Cell Proteomics and Transcriptomics Data by Multi‐Task Transformer." Advanced Science, March 14, 2024. http://dx.doi.org/10.1002/advs.202307835.
Full textLuo, Bingying, Fei Teng, Guo Tang, et al. "StereoMM: a graph fusion model for integrating spatial transcriptomic data and pathological images." Briefings in Bioinformatics 26, no. 3 (2025). https://doi.org/10.1093/bib/bbaf210.
Full textLiu, Yufang, Yongkai Chen, Haoran Lu, Wenxuan Zhong, Guo-Cheng Yuan, and Ping Ma. "Orthogonal multimodality integration and clustering in single-cell data." BMC Bioinformatics 25, no. 1 (2024). http://dx.doi.org/10.1186/s12859-024-05773-y.
Full textOgris, Christoph, Yue Hu, Janine Arloth, and Nikola S. Müller. "Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-85544-4.
Full textLin, Xiang, Tian Tian, Zhi Wei, and Hakon Hakonarson. "Clustering of single-cell multi-omics data with a multimodal deep learning method." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-35031-9.
Full textMarconato, Luca, Giovanni Palla, Kevin A. Yamauchi, et al. "SpatialData: an open and universal data framework for spatial omics." Nature Methods, March 20, 2024. http://dx.doi.org/10.1038/s41592-024-02212-x.
Full textYao, Minhao, and Zhonghua Liu. "An Introduction to Causal Inference Methods with Multi‐omics Data." Current Protocols 5, no. 6 (2025). https://doi.org/10.1002/cpz1.70168.
Full textItai, Yonatan, Nimrod Rappoport, and Ron Shamir. "Integration of gene expression and DNA methylation data across different experiments." Nucleic Acids Research, July 3, 2023. http://dx.doi.org/10.1093/nar/gkad566.
Full textPark, Jiwoon, Junbum Kim, Tyler Lewy, et al. "Spatial omics technologies at multimodal and single cell/subcellular level." Genome Biology 23, no. 1 (2022). http://dx.doi.org/10.1186/s13059-022-02824-6.
Full textOlsen, Christian. "Why Multimodal Data is Growing In Pharma." Onco Zine - The International Oncology Network, July 29, 2024. http://dx.doi.org/10.14229/onco.2024.07.29.001.
Full text