Dissertations / Theses on the topic 'Multimodale Annotation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Multimodale Annotation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Völkel, Thorsten. "Multimodale Annotation geographischer Daten zur personalisierten Fußgängernavigation." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239804877252-19609.
Full textMobility impaired pedestrians such as wheelchair users, blind and visually impaired, or elderly people impose specific requirements upon the calculation of appropriate routes. The shortest path might not be the best. Within this thesis, the concept of multimodal annotation is developed. The concept allows for extension of the geographical base data by users. Further concepts are developed allowing for the application of the acquired data for the calculation of personalized routes based on the requirements of the individual user. The concept of multimodal annotation was successfully evaluated incorporating 35 users and may be used as the base for further research in the area
Völkel, Thorsten. "Multimodale Annotation geographischer Daten zur personalisierten Fußgängernavigation." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23563.
Full textMobility impaired pedestrians such as wheelchair users, blind and visually impaired, or elderly people impose specific requirements upon the calculation of appropriate routes. The shortest path might not be the best. Within this thesis, the concept of multimodal annotation is developed. The concept allows for extension of the geographical base data by users. Further concepts are developed allowing for the application of the acquired data for the calculation of personalized routes based on the requirements of the individual user. The concept of multimodal annotation was successfully evaluated incorporating 35 users and may be used as the base for further research in the area.
Znaidia, Amel. "Handling Imperfections for Multimodal Image Annotation." Phd thesis, Ecole Centrale Paris, 2014. http://tel.archives-ouvertes.fr/tel-01012009.
Full textTayari, Meftah Imen. "Modélisation, détection et annotation des états émotionnels à l'aide d'un espace vectoriel multidimensionnel." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00838803.
Full textNguyen, Nhu Van. "Représentations visuelles de concepts textuels pour la recherche et l'annotation interactives d'images." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00730707.
Full textBudnik, Mateusz. "Active and deep learning for multimedia." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM011.
Full textThe main topics of this thesis include the use of active learning-based methods and deep learning in the context of retrieval of multimodal documents. The contributions proposed during this thesis address both these topics. An active learning framework was introduced, which allows for a more efficient annotation of broadcast TV videos thanks to the propagation of labels, the use of multimodal data and selection strategies. Several different scenarios and experiments were considered in the context of person identification in videos, including using different modalities (such as faces, speech segments and overlaid text) and different selection strategies. The whole system was additionally validated in a dry run involving real human annotators.A second major contribution was the investigation and use of deep learning (in particular the convolutional neural network) for video retrieval. A comprehensive study was made using different neural network architectures and training techniques such as fine-tuning or using separate classifiers like SVM. A comparison was made between learned features (the output of neural networks) and engineered features. Despite the lower performance of the engineered features, fusion between these two types of features increases overall performance.Finally, the use of convolutional neural network for speaker identification using spectrograms is explored. The results are compared to other state-of-the-art speaker identification systems. Different fusion approaches are also tested. The proposed approach obtains comparable results to some of the other tested approaches and offers an increase in performance when fused with the output of the best system
Nag, Chowdhury Sreyasi [Verfasser]. "Text-image synergy for multimodal retrieval and annotation / Sreyasi Nag Chowdhury." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1240674139/34.
Full textAbrilian, Sarkis. "Représentation de comportements emotionnels multimodaux spontanés : perception, annotation et synthèse." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00620827.
Full textOram, Louise Carolyn. "Scrolling in radiology image stacks : multimodal annotations and diversifying control mobility." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45508.
Full textSilva, Miguel Marinhas da. "Automated image tagging through tag propagation." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/5963.
Full textToday, more and more data is becoming available on the Web. In particular, we have recently witnessed an exponential increase of multimedia content within various content sharing websites. While this content is widely available, great challenges have arisen to effectively search and browse such vast amount of content. A solution to this problem is to annotate information, a task that without computer aid requires a large-scale human effort. The goal of this thesis is to automate the task of annotating multimedia information with machine learning algorithms. We propose the development of a machine learning framework capable of doing automated image annotation in large-scale consumer photos. To this extent a study on state of art algorithms was conducted, which concluded with a baseline implementation of a k-nearest neighbor algorithm. This baseline was used to implement a more advanced algorithm capable of annotating images in the situations with limited training images and a large set of test images – thus, a semi-supervised approach. Further studies were conducted on the feature spaces used to describe images towards a successful integration in the developed framework. We first analyzed the semantic gap between the visual feature spaces and concepts present in an image, and how to avoid or mitigate this gap. Moreover, we examined how users perceive images by performing a statistical analysis of the image tags inserted by users. A linguistic and statistical expansion of image tags was also implemented. The developed framework withstands uneven data distributions that occur in consumer datasets, and scales accordingly, requiring few previously annotated data. The principal mechanism that allows easier scaling is the propagation of information between the annotated data and un-annotated data.
Guillaumin, Matthieu. "Données multimodales pour l'analyse d'image." Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00522278/en/.
Full textBocquet, Aurelien. "Infrastructure logicielle multi-modèles pour l'accès à des servcies en mobilité." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2008. http://tel.archives-ouvertes.fr/tel-00357495.
Full textFace à ces besoins, les intergiciels proposent des modèles de programmation et de communication différents, fournissant des moyens de communication efficaces dans certaines situations.
La mobilité introduit une problématique supplémentaire pour ces intergiciels. D'une part l'interopérabilité devient inévitable ; le nombre de composants répartis susceptibles d'être utilisés en mobilité est immense, et les composants peuvent être développés avec différents intergiciels. D'autre part le contexte varie, et avec lui les conditions et capacités de communication évoluent.
Nous traitons dans cette thèse des impératifs actuels d'un intergiciel en mobilité. Nous proposons pour cela une approche multi-modèles, basée sur les travaux actuels dans ce domaine, et présentant des concepts novateurs.
Cette approche se compose d'un modèle de programmation générique, proposant différents types de communications synchrones, asynchrones, et basées sur des patrons de conception. Elle se compose également d'une combinaison de modèles de communication, assurant l'interopérabilité avec les intergiciels standards, et offrant des possibilités de communications enrichies, capables de s'adapter aux changements de contextes.
Des politiques d'adaptation définissent les règles de combinaison des modèles en fonction d'observations du contexte, afin de se comporter au mieux face à ses évolutions.
Des mécanismes d'adaptation dynamique permettent à notre approche de proposer une prise en compte en temps réel des changements de contexte, et permettent également de reconfigurer le système pendant son exécution afin de répondre à des besoins de déploiement.
Nous avons validé notre approche au travers d'une application concrète aux problèmes engendrés par l'utilisation d'un proxy Internet à bord des trains : le développement d'un greffon multi-modèles a illustré et justifié notre approche, et l'évaluation de ce greffon a montré les bénéfices de celle-ci face aux changements de contexte.
Pour implémenter entièrement notre approche et proposer ainsi un intergiciel multi-modèles, nous avons conçu et développé notre infrastructure logicielle multi-modèles, proposant tous les concepts de l'approche. Une première version "statique" puis une version finale offrant les mécanismes d'adaptation dynamique ont été implémentées et permettent ainsi de profiter des bénéfices de notre approche multi-modèles.
Völkel, Thorsten [Verfasser]. "Multimodale Annotation geographischer Daten zur personalisierten Fußgängernavigation / eingereicht von Thorsten Völkel." 2008. http://d-nb.info/994368364/34.
Full textTsai, Chun-Yu. "Multimodal News Summarization, Tracking and Annotation Incorporating Tensor Analysis of Memes." Thesis, 2017. https://doi.org/10.7916/D8FF44N7.
Full textHsueh, Chi-Hsun, and 薛祺薰. "Effects of Multimodal Annotations in Videos on Comprehension of EFL Learners in Elementary Schools in Taiwan." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/8385xs.
Full text國立臺灣科技大學
應用外語系
104
This study investigates the effect of different combinations of multimodal scaffolding annotations on EFL elementary school students’ comprehension of L2 video clips. 151 fifth graders from four intact classes at a private elementary school in Taiwan participated in the study. They watched two video clips under one of four modalities: (1) video clips with English captions and L1 (Chinese) annotations (CA), (2) video clips with English captions and L2 (English) annotations (EA), (3) video clips with English captions and graphics-based annotations (GA) and (4) video clips with English captions but no annotations (Control group). Before the treatment, the results from an in-house English ability examination indicate that four intact classes are homogeneous. Two comprehension tests and an interview are conducted to collect both quantitative and qualitative data. Results from one-way ANOVA and interviews have yielded the conclusion that annotated videos are more effective than control group. The CA group outperforms than other three modalities, and GA group performs second in overall comprehension of L2 video clips. Moreover, the results of post-hoc test reveal that there is a significant difference between CA and EA, meaning first language knowledge dominates the comprehension skills. However, no significant difference is found between text (CA and EA) and GA modalities. The interview data reveal that learners hold positive attitudes toward annotations as useful aids and believe that annotations increase their attention, help them acquire new words, reinforce the learning of content knowledge, and reduce difficulties in English learning.