To see the other types of publications on this topic, follow the link: Multiparticle production.

Journal articles on the topic 'Multiparticle production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multiparticle production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jacob, M. "Multiparticle production." Physics Reports 315, no. 1-3 (1999): 7–25. http://dx.doi.org/10.1016/s0370-1573(99)00028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kawrakow, I. "Pomeron and multiparticle production." Physical Review D 49, no. 5 (1994): 2275–89. http://dx.doi.org/10.1103/physrevd.49.2275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TROSHIN, S. M., and N. E. TYURIN. "COLLECTIVE EFFECTS IN MULTIPARTICLE PRODUCTION PROCESSES AT THE LHC." International Journal of Modern Physics A 26, no. 27n28 (2011): 4703–30. http://dx.doi.org/10.1142/s0217751x11054723.

Full text
Abstract:
We discuss various aspects of the multiparticle production processes at the LHC energy range with emphasis on the collective effects associated with appearance of the new scattering mode, which corresponds to the reflective scattering and its impact on multiparticle production processes.
APA, Harvard, Vancouver, ISO, and other styles
4

Andersen, J. R., N. H. Brook, Yu L. Dokshitzer, et al. "Multiparticle production in QCD jets." Journal of Physics G: Nuclear and Particle Physics 28, no. 9 (2002): 2509–21. http://dx.doi.org/10.1088/0954-3899/28/9/313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dremin, I. M. "Multiparticle production and perturbative QCD." Surveys in High Energy Physics 16, no. 3-4 (2001): 141–60. http://dx.doi.org/10.1080/01422410108225689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dremin, Igor M. "Multiparticle production and quantum chromodynamics." Physics-Uspekhi 45, no. 5 (2002): 507–25. http://dx.doi.org/10.1070/pu2002v045n05abeh001088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dremin, Igor M. "Multiparticle production and quantum chromodynamics." Uspekhi Fizicheskih Nauk 172, no. 5 (2002): 551. http://dx.doi.org/10.3367/ufnr.0172.200205b.0551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bożek, P., and M. Płoszajczak. "Fractal structures in multiparticle production." Physics Letters B 251, no. 4 (1990): 623–28. http://dx.doi.org/10.1016/0370-2693(90)90807-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilk, Grzegorz, and Zbigniew Włodarczyk. "Oscillations in Multiparticle Production Processes." Entropy 19, no. 12 (2017): 670. http://dx.doi.org/10.3390/e19120670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matinyan, S. G., and E. B. Prokhorenko. "Branching processes and multiparticle production." Physical Review D 48, no. 11 (1993): 5127–32. http://dx.doi.org/10.1103/physrevd.48.5127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Busza, Wit. "Multiparticle Production in pp, p." Acta Physica Hungarica A) Heavy Ion Physics 24, no. 1-4 (2005): 3–13. http://dx.doi.org/10.1556/aph.24.2005.1-4.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hwa, Rudolph C. "Fractal measures in multiparticle production." Physical Review D 41, no. 5 (1990): 1456–62. http://dx.doi.org/10.1103/physrevd.41.1456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Florkowski, Wojciech, and Rudolph C. Hwa. "Universal multifractality in multiparticle production." Physical Review D 43, no. 5 (1991): 1548–54. http://dx.doi.org/10.1103/physrevd.43.1548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Stodolsky, L. "Temperature Fluctuations in Multiparticle Production." Physical Review Letters 75, no. 6 (1995): 1044–45. http://dx.doi.org/10.1103/physrevlett.75.1044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Khlebnikov, S. Yu. "Semiclassical approach to multiparticle production." Physics Letters B 282, no. 3-4 (1992): 459–65. http://dx.doi.org/10.1016/0370-2693(92)90669-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

KHAN, M. MOHSIN, SHAKEEL AHMAD, N. AHMAD, M. ZAFAR, and M. IRFAN. "ANALYSIS BEYOND INTERMITTENCY IN MULTIPARTICLE PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS." International Journal of Modern Physics E 19, no. 11 (2010): 2219–28. http://dx.doi.org/10.1142/s0218301310016612.

Full text
Abstract:
Possibility of occurrence of chaotic behavior in multiparticle production in relativistic nuclear collisions is examined. Erraticity spectrum and entropy index are determined and compared with those of FRITIOF-generated events. The results obtained in the present study reveal existence of erraticity in multiparticle production in relativistic nuclear collisions.
APA, Harvard, Vancouver, ISO, and other styles
17

Mücke, A., J. P. Rachen, Ralph Engel, R. J. Protheroe, and Todor Stanev. "Photohadronic Processes in Astrophysical Environments." Publications of the Astronomical Society of Australia 16, no. 2 (1999): 160–66. http://dx.doi.org/10.1071/as99160.

Full text
Abstract:
AbstractWe discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power-law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non-diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used ‘Δ-approximation’ for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Dremin, Igor M. "Correlations and fluctuations in multiparticle production." Uspekhi Fizicheskih Nauk 160, no. 8 (1990): 105–33. http://dx.doi.org/10.3367/ufnr.0160.199008c.0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dremin, Igor M. "Correlations and fluctuations in multiparticle production." Soviet Physics Uspekhi 33, no. 8 (1990): 647–62. http://dx.doi.org/10.1070/pu1990v033n08abeh002621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, L. K., A. H. Chan, and C. K. Chew. "Multifractality and high energy multiparticle production." Zeitschrift für Physik C Particles and Fields 60, no. 3 (1993): 503–7. http://dx.doi.org/10.1007/bf01560048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zakharov, V. I. "Unitary constraints on multiparticle weak production." Nuclear Physics B 353, no. 3 (1991): 683–88. http://dx.doi.org/10.1016/0550-3213(91)90322-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Khoze, Valery A., and Wolfgang Ochs. "Perturbative-QCD Approach to Multiparticle Production." International Journal of Modern Physics A 12, no. 17 (1997): 2949–3120. http://dx.doi.org/10.1142/s0217751x97001638.

Full text
Abstract:
In this review we discuss the analytical perturbative approach, based on perturbative QCD and local parton hadron duality (LPHD), and its application to multiparticle production in jets in the semisoft region. Analytical formulae are presented for various observables within the accuracy of the modified leading logarithmic approximation (MLLA), i.e. with terms of relative order [Formula: see text] taken into account systematically, and in some cases with even higher accuracy. These predictions are confronted with existing experimental data. Many details of the perturbative approach to multiple hadroproduction have been consolidated in recent years, and the overall picture is remarkably healthy. The prospects of future studies of the semisoft jet physics are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Fu-Hu, Sakina Fakhraddin, and Bhartendu K. Singh. "Multiparticle Production in High Energy Collisions." Advances in High Energy Physics 2013 (2013): 1–2. http://dx.doi.org/10.1155/2013/528352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Blin, A. H., B. Hiller, and Meng Ta-chung. "Multiparticle production in photon-photon collisions." Physical Review D 40, no. 1 (1989): 44–46. http://dx.doi.org/10.1103/physrevd.40.44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bershadskii, A. "Multifractal branching cascades and multiparticle production." Europhysics Letters (EPL) 53, no. 6 (2001): 716–21. http://dx.doi.org/10.1209/epl/i2001-00209-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zborovsky, I. "Evolution of clans in multiparticle production." Zeitschrift f�r Physik C Particles and Fields 63, no. 2 (1994): 257–61. http://dx.doi.org/10.1007/bf01411018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Papadopoulos, Costas G. "Partial-wave amplitudes and multiparticle production." Physics Letters B 324, no. 1 (1994): 66–71. http://dx.doi.org/10.1016/0370-2693(94)00121-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Troshin, S. M., and N. E. Tyurin. "Effects of the reflective scattering in hadron production at high energies." International Journal of Modern Physics A 29, no. 26 (2014): 1450151. http://dx.doi.org/10.1142/s0217751x14501516.

Full text
Abstract:
A gradual transition to the reflecting scattering mode developing already at the LHC energies is affecting multiparticle production dynamics, in particular, relation of the centrality with the impact parameter values of pp-collisions. We discuss the issues in the framework of the geometrical picture for the multiparticle production processes proposed by Chou and Yang. We consider effects of reflective scattering mode presence for the inclusive cross-sections.
APA, Harvard, Vancouver, ISO, and other styles
29

Troshin, S. M., and N. E. Tyurin. "Multiparticle production in the model with antishadowing." Journal of Physics G: Nuclear and Particle Physics 29, no. 6 (2003): 1061–68. http://dx.doi.org/10.1088/0954-3899/29/6/309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

GEORGOPOULOS, G., A. PETRIDIS, and M. VASSILIOU. "DISCRETE WAVELET ANALYSIS FOR MULTIPARTICLE PRODUCTION EXPERIMENTS." Modern Physics Letters A 15, no. 16 (2000): 1051–61. http://dx.doi.org/10.1142/s0217732300001237.

Full text
Abstract:
In high energy nucleus–nucleus collisions (SPS, RHIC, LHC) and in cosmic rays interactions, many particles are produced in the available phase space. We make an attempt to apply the wavelets technique in order to classify such events according to the event pattern and also to locate the so-called "clustering" in a distribution. After describing the method, we demonstrate its power (a) to a single event, produced by a pion condensation theoretical model, (b) to a sample of Pb–Pb simulated data at 158 GeV/c per nucleon taking into account all the experimental uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
31

Kinoshita, K., and A. Minaka. "Hadronic Chain Model for Soft Multiparticle Production." Progress of Theoretical Physics 81, no. 1 (1989): 183–98. http://dx.doi.org/10.1143/ptp.81.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wilk, Grzegorz, and Zbigniew Włodarczyk. "Some intriguing aspects of multiparticle production processes." International Journal of Modern Physics A 33, no. 10 (2018): 1830008. http://dx.doi.org/10.1142/s0217751x18300089.

Full text
Abstract:
Multiparticle production processes provide valuable information about the mechanism of the conversion of the initial energy of projectiles into a number of secondaries by measuring their multiplicity distributions and their distributions in phase space. They therefore serve as a reference point for more involved measurements. Distributions in phase space are usually investigated using the statistical approach, very successful in general but failing in cases of small colliding systems, small multiplicities, and at the edges of the allowed phase space, in which cases the underlying dynamical effects competing with the statistical distributions take over. We discuss an alternative approach, which applies to the whole phase space without detailed knowledge of dynamics. It is based on a modification of the usual statistics by generalizing it to a superstatistical form. We stress particularly the scaling and self-similar properties of such an approach manifesting themselves as the phenomena of the log-periodic oscillations and oscillations of temperature caused by sound waves in hadronic matter. Concerning the multiplicity distributions we discuss in detail the phenomenon of the oscillatory behavior of the modified combinants apparently observed in experimental data.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, G. J., and Y. D. He. "Energy quantization and intermittency in multiparticle production." Journal of Physics G: Nuclear and Particle Physics 19, no. 9 (1993): 1279–83. http://dx.doi.org/10.1088/0954-3899/19/9/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

HASAN, R., M. MOHIB-UL HAQ, and SAIFUL ISLAM. "MULTIFRACTALITY IN MULTIPARTICLE PRODUCTION AT HIGH ENERGIES." International Journal of Modern Physics E 09, no. 05 (2000): 417–29. http://dx.doi.org/10.1142/s0218301300000313.

Full text
Abstract:
We apply Takagi methodology to study the multifractal behavior of shower particles produced in 12 C -Em collisions at 3.6 A GeV and p-Em collisions at 400 GeV. The multiplicity moments are found to have a power law dependence on the mean multiplicity in the varying bin sizes for different nuclear targets. The values of the generalized dimensions are evaluated and found to decrease with q, thereby supporting multifractality in multiparticle production. The values of the multifractal specific heat are also evaluated for our data and for collisions of other heavy ions. We find that the multifractal specific heat seems to have a universal value (~1/4) that does not depend on the type of ions and their energy.
APA, Harvard, Vancouver, ISO, and other styles
35

Rogalyov, R. N. "The Equation of State and Multiparticle Production." Physics of Particles and Nuclei 55, no. 6 (2024): 1500–1505. http://dx.doi.org/10.1134/s1063779624701156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ryskin, M. G., A. D. Martin, and V. A. Khoze. "Probes of multiparticle production at the LHC." Journal of Physics G: Nuclear and Particle Physics 38, no. 8 (2011): 085006. http://dx.doi.org/10.1088/0954-3899/38/8/085006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bożek, P., and M. Płoszajczak. "Finite-size scaling in the multiparticle production." Zeitschrift für Physik C Particles and Fields 56, no. 3 (1992): 473–77. http://dx.doi.org/10.1007/bf01565958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Van Hove, L. "Cold quark-gluon plasma and multiparticle production." Annals of Physics 192, no. 1 (1989): 66–76. http://dx.doi.org/10.1016/0003-4916(89)90116-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Finkelstein, J. "Poisson-distributed cluster models for multiparticle production." Physical Review D 37, no. 9 (1988): 2446–50. http://dx.doi.org/10.1103/physrevd.37.2446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bialas, A., and R. Peschanski. "Intermittency in multiparticle production at high energy." Nuclear Physics B 308, no. 4 (1988): 857–67. http://dx.doi.org/10.1016/0550-3213(88)90131-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wilk, Grzegorz, and Zbigniew Włodarczyk. "Quasi-power laws in multiparticle production processes." Chaos, Solitons & Fractals 81 (December 2015): 487–96. http://dx.doi.org/10.1016/j.chaos.2015.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Derado, I., R. C. Hwa, G. Jancso, and N. Schmitz. "Multifractal properties of muon-induced multiparticle production." Physics Letters B 283, no. 1-2 (1992): 151–54. http://dx.doi.org/10.1016/0370-2693(92)91446-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Demidov, S. V., and B. R. Farkhtdinov. "Constraints on multiparticle production in scalar field theory from classical simulations." EPJ Web of Conferences 191 (2018): 02021. http://dx.doi.org/10.1051/epjconf/201819102021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

DREMIN, I. M. "MULTIPLICATIVE PROCESSES OF MULTIPARTICLE PRODUCTION AND LOGARITHMIC MOMENTS." Modern Physics Letters A 04, no. 27 (1989): 2685–88. http://dx.doi.org/10.1142/s0217732389002987.

Full text
Abstract:
The study of the dependence of the logarithmic moments on the rapidity bin width is advocated. It provides the typical details of the ensemble while usual (or factorial) moments are dominated by several rare configurations in it if multiparticle production is treated as a branching process.
APA, Harvard, Vancouver, ISO, and other styles
45

DREMIN, I. M. "MULTIPLICATIVE PROCESSES OF MULTIPARTICLE PRODUCTION AND LOGARITHMIC MOMENTS." Modern Physics Letters A 05, no. 04 (1990): 281–84. http://dx.doi.org/10.1142/s0217732390000330.

Full text
Abstract:
The study of the dependence of the logarithmic moments on the rapidity bin width is advocated. It provides the typical details of the ensemble while usual (or factorial) moments are dominated by several rare configurations in it if multiparticle production is treated as a branching process.
APA, Harvard, Vancouver, ISO, and other styles
46

Barlykov, N., V. Dudin, E. S. Kokoulina, and V. A. Nikitin. "PHENOMENOLOGY OF HIGH MULTIPLICITY IN LEPTON INTERACTIONS." Âdernaâ fizika 87, no. 4 (2024): 335–39. https://doi.org/10.31857/s0044002724040032.

Full text
Abstract:
Interest to processes of multiparticle production in lepton and hadron interactions is not decreased. Development of strong interaction theory, quantum chromodynamics, allowes describing of these interactions at the quark-gluon level. Transit from partons to observable hadrons at the hadronization stage is extremely difficult. This paper presents the gluon dominance model that describes multiparticle production of secondary particles including the hadronization stage. This model is applied to the description of 𝑒+𝑒−- annihilation. It confirms the active role of the gluon component at the secondary particle formation, evidences about fragmentation mechanism of hadronization, which is realized in vacuum, describes multiplicity distribution data.
APA, Harvard, Vancouver, ISO, and other styles
47

Lednický, R. "Femtoscopic correlations in multiparticle production and Beta-Decay." Brazilian Journal of Physics 37, no. 3a (2007): 939–46. http://dx.doi.org/10.1590/s0103-97332007000600011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dremin, Igor M., and Andrei V. Leonidov. "Theoretical search for collective effects in multiparticle production." Uspekhi Fizicheskih Nauk 165, no. 7 (1995): 759. http://dx.doi.org/10.3367/ufnr.0165.199507c.0759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bershadskii, A. "Multifractal critical chaos and intermittency in multiparticle production." Journal of Physics G: Nuclear and Particle Physics 26, no. 7 (2000): 1011–15. http://dx.doi.org/10.1088/0954-3899/26/7/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Khoze, Valery A., and Wolfgang Ochs. "Theory of multiparticle production in the soft region." Journal of Physics G: Nuclear and Particle Physics 28, no. 5 (2002): 895–905. http://dx.doi.org/10.1088/0954-3899/28/5/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!