Academic literature on the topic 'Multiphase flow in porous media'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiphase flow in porous media.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Multiphase flow in porous media"

1

Little, Sylvia Bandy. "Multiphase flow through porous media." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sheng, Jopan. "Multiphase immiscible flow through porous media." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/53630.

Full text
Abstract:
A finite element model is developed for multiphase flow through soil involving three immiscible fluids: namely air, water, and an organic fluid. A variational method is employed for the finite element formulation corresponding to the coupled differential equations governing the flow of the three fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures which may be calibrated from two-phase laboratory measurements, are employed in the finite element program. The solution procedure uses iteration by a modified Picard method to handle the nonlinear properties and the backward method for a stable time integration. Laboratory experiments involving soil columns initially saturated with water and displaced by p-cymene (benzene-derivative hydrocarbon) under constant pressure were simulated by the finite element model to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured capillary head-saturation data agreed well with observed outflow data. Two-dimensional simulations are presented for eleven hypothetical field cases involving introduction of an organic fluid near the soil surface due to leakage from an underground storage tank. The subsequent transport of the organic fluid in the variably saturated vadose and ground water zones is analysed.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Snyder, Kevin P. "Multiphase flow and mass transport through porous media." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reichenberger, Volker. "Numerical simulation of multiphase flow in fractured porous media." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970266049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malcolm, Lorna Taryn. "Multiphase flow in porous media at low interfacial tension." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacobs, Bruce Lee. "Effective properties of multiphase flow in heterogeneous porous media." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9697.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 1999.<br>Includes bibliographical references (leaves 218-224).<br>The impact of heterogeneity on multiphase fl.ow is explored using a spectral perturbation technique employing a stationary, stochastic representation of the spatial variability of soil prop­erties. A derivation of the system's effective properties - nonwetting phase moisture content, capillary pressure, normalized saturation and permeability - was developed which is not specific as to the form of the permeability dependence on saturation or capillary pressure. This lack of specificity enables evaluation and comparison of effective properties with differing characterization forms. Conventional characterization techniques are employed to parameterize the saturation, capillary pressure, relative permeability relationships and applied to the Cape Cod and Borden aquifers. An approximate solution for the characteristic width of a dense nonaqueous phase liquid (DNAPL) plume or air sparging contributing area is derived to evaluate the sensitivity of system behavior to properties of input processes. Anisotropy is predicted for uniform, vertical flow in the Borden Aquifer consistent with both prior experimental observations and Monte Carlo simulations. Increases of the mean capillary pressure (increasing nonwetting phase saturation) is accompanied by reductions in nonwetting phase anisotropy. Similar levels of anisotropy are not found in the case of the Cape Cod aquifer; the difference is attributed largely to the mean value of the log of the characteristic pressure which is shown to control the rate of return to asymptotic permeability and hence system uniformity. A positive relation between anisotropy and interfacial tension was observed, consistent with prior numerical simulations. Positive dependence of lateral spreading on input fl.ow rate is predicted for Cape Cod Aquifer with reverse response at Borden Aquifer due to capillary pressure dependent anisotropy of Borden Aquifer. The effective permeability for horizontal fl.ow with core scale heterogeneity was found to be velocity dependent with features qualitatively similar to experimental observations and numerical experiments. Application of Leverett scaling as generally implemented in Monte Carlo simulations under represents aquifer hetero­ geneity and for the Borden Aquifer, van Genuchten characterization reduces system anisotropy by several orders of magnitude. Anisotropy of the effective properties proved to be less sensitive to Leverett scaling if the Brooks-Corey characterization was used due to insensitivity in this case to the variance of the slope parameter.<br>by Bruce L. Jacobs.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
7

Nitsche, Ludwig C. (Ludwig Carlos). "Multiphase flow through spatially periodic models of porous media." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/111043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gunstensen, Andrew K. (Andrew Knut). "Lattice-Boltzmann studies of multiphase flow through porous media." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13168.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1992.<br>Includes bibliographical references (p. 115-122).<br>by Andrew K. Gunstensen.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jiazuo. "Self-potential during multiphase flow in complex porous media." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/48479.

Full text
Abstract:
The rock pore space in many subsurface settings is saturated with water and one or more immiscible fluid phases; examples include non-aqueous-phase liquids (NAPLs) in contaminated aquifers, supercritical CO2 during sequestration in deep saline aquifers, the vadose zone, and hydrocarbon reservoirs. Self-potential (SP) methods have been proposed to monitor multiphase flow in such settings. However, to properly interpret and model these data requires an understanding of the saturation dependence of the streaming potential. This study presents a methodology to determine the saturation dependence of the streaming potential coupling coefficient and streaming current charge density in unsteady-state drainage and imbibition experiments and applies the method to published experimental data. Unsteady-state experiments do not yield representative values of coupling coefficient and streaming current density (or other transport properties such as relative permeability and electrical conductivity) at partial saturation because water saturation within the sample is not uniform. An interpretation method is required to determine the saturation dependence of coupling coefficient and streaming current density within a representative elementary volume with uniform saturation. The method makes no assumptions about the pore-space geometry. We also applied pore network models that can capture the distribution of fluids and electrical charge in real complex porous media to investigate and quantify streaming potential signals during multiphase flow at the pore level. The network modelling results were tested against the interpreted data and experimental data of Estaillades carbonate and St. Bees sandstone, which provided reliable pore-scale explanations of the experimental observations. The results presented here can be used to help interpret SP measurements obtained in partially-saturated subsurface settings.
APA, Harvard, Vancouver, ISO, and other styles
10

Kéchavarzi, Cédric. "Physical modelling of immiscible multiphase flow in porous media." Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography