Academic literature on the topic 'Multiphysic imager'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiphysic imager.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiphysic imager"

1

Zolotukhin P. A., Il'ichev E. A., Petrukhin G. N., Popov A. V., Rychkov G. S., and Teverovskaya E. G. "Calculation and optimization of the limiting characteristics of a single-channel dual-spectrum image receiver of objects emitting in the ultraviolet range." Technical Physics 92, no. 9 (2022): 1254. http://dx.doi.org/10.21883/tp.2022.09.54691.97-22.

Full text
Abstract:
A single-channel, two-spectral image receiver of objects emitting in UV radiation, made in the image intensifier tube architecture, was proposed and investigated. With the help of the COMSOL Multiphysics software package, search optimal measurements of the potential on the elements of the image receiver (silicon membrane, germanium and diamond photocathode, MCP input and output sensors) were implemented, which provides the possibility of registering and presence of UV objects in relation to the terrain. Keywords: image intensifier tube, diamond photocathode, germanium photocathode, ultraviolet
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Yoon Young, Jae Chun Ryu, Eunil Kim, Hyoungkee Kim, and Byungseong Ahn. "A Variational Art Algorithm for Image Generation." Leonardo 49, no. 3 (2016): 226–31. http://dx.doi.org/10.1162/leon_a_00914.

Full text
Abstract:
The authors propose a variational art algorithm: a virtual system-based optimization algorithm developed for generating images. Observing that the topology optimization method used for multiphysics system design can produce two- or three-dimensional layouts without baselines, the authors propose to expand it beyond engineering applications for generating images. They have devised a virtual physical system—a heat-path system—that “interprets” the optimization-based process of image generation as the simultaneous drawing of multiple strokes in a painting.
APA, Harvard, Vancouver, ISO, and other styles
3

Leslie, Nathaniel, and Janine Mauzeroll. "Simulating Scanning Electrochemical Microscopy Images of Arbitrarily Shaped Reactive Sites without a Site-Specific Model." ECS Meeting Abstracts MA2022-01, no. 46 (2022): 1947. http://dx.doi.org/10.1149/ma2022-01461947mtgabs.

Full text
Abstract:
Scanning electrochemical microscopy (SECM) yields two-dimensional electrochemical images when the current at a microelectrode is recorded as it moves above a surface generating redox species. As SECM images are often systematically compared to microstructure features obtained by electron microscopy there is a clear need to find ways to integrate electron microscopy images into SECM image simulations. Recently, finite element method simulations of sites where electrochemical reactions take place is employed to evaluate reactive feature size.[1] Current models move the microelectrode or the reac
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Yongzhen, Guocong Lin, Xidong Ding, and Tao Su. "The detection of buried nanopillar based on electrostatic force microscopy simulation." AIP Advances 12, no. 6 (2022): 065211. http://dx.doi.org/10.1063/5.0088843.

Full text
Abstract:
Based on electrostatic force microscopy (EFM), the image of nano-objects buried below the surface was numerically simulated by using COMSOL Multiphysics® software. The shape and the approximate size of the buried pillar could be obtained from the simulated EFM images. It was demonstrated that the detection of the buried nanopillar based on EFM was feasible. When the image data measured by EFM were used as the input data for comparison with the simulated data, the three unknowns (relative dielectric constant ε r, p, buried depth d, and side length l) of the buried pillar could be obtained. In t
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Dan, Jiahua Liu, Yuchen Wang, Bin Xu, and Xu Wang. "Application of a Generative Adversarial Network in Image Reconstruction of Magnetic Induction Tomography." Sensors 21, no. 11 (2021): 3869. http://dx.doi.org/10.3390/s21113869.

Full text
Abstract:
Image reconstruction of Magnetic induction tomography (MIT) is an ill-posed problem. The non-linear characteristics lead many difficulties to its solution. In this paper, a method based on a Generative Adversarial Network (GAN) is presented to tackle these barriers. Firstly, the principle of MIT is analyzed. Then the process for finding the global optimum of conductivity distribution is described as a training process, and the GAN model is proposed. Finally, the image was reconstructed by a part of the model (the generator). All datasets are obtained from an eight-channel MIT model by COMSOL M
APA, Harvard, Vancouver, ISO, and other styles
6

Grevcev A. S., Zolotukhin P. A., Il'ichev E. A., Petruhin G. N., Popov A. V., and Rychkov G. S. "The thermal image receiver realized in the electron-optical converter architecture." Technical Physics 92, no. 4 (2022): 419. http://dx.doi.org/10.21883/tp.2022.04.53597.270-21.

Full text
Abstract:
An innovative design is considered, and the results of analysis and calculations of the characteristics of a thermal image receiver (3-15 microns), made in the electron-optical converter architecture, are presented. For the sensor-converting pyroelectric unit of the electron-optical converter, the spatial dependences of the electric field strengths and the values of the electric potentials on the spontaneous polarization of the film substance are calculated. Estimates are obtained and the characteristics of thermal-field-induced polarization of various pyroelectric films are discussed. The tem
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Liu, Chun Guang Xu, Xiang Hui Guo, et al. "Multi-Objects Ultrasonic Tomography by Immersion Circular Array." Advanced Materials Research 1006-1007 (August 2014): 879–83. http://dx.doi.org/10.4028/www.scientific.net/amr.1006-1007.879.

Full text
Abstract:
The typical application of ultrasonic tomography is the determination of process parameters like component flow rates and material fractions in industrial environment. Another promising application is non-invasive health monitoring in medical care. Both acoustic attenuation and acoustic impedance inhomogeneity are the main physical quantities that are used to reconstruct the image. When transmission ultrasonic waves are shadowed by hard tissue because of severe attenuation, the reflection mode can be an effective supplement. This paper provides multi-objects reconstruction images by reflection
APA, Harvard, Vancouver, ISO, and other styles
8

Sukor, Nur Syafiqah Amirah Ab, Fatinah Mohd Rahalim, Juliza Jamaludin, and Normaliza Ab Malik. "A Conceptual Model of Dual-Mode Tomography Technique for Dental Diagnostics: Ultrasound and Light Propagation Analysis." Journal of Physics: Conference Series 2641, no. 1 (2023): 012008. http://dx.doi.org/10.1088/1742-6596/2641/1/012008.

Full text
Abstract:
Abstract Many advanced imaging modalities, such as magnetic resonance imaging (MRI), X-ray Computed Tomography, Positron Emission Tomography (PET), Ultrasound, Single Photon Emission Computed Tomography (SPECT), and the most recent, Optical Coherence Tomography (OCT), have been developed for identifying dental tissues images and detecting changes in early carious lesions. Some modalities use high doses of radiation and energy to obtain more information, which may be harmful to patient’s health. Most early commercial OCTs had drawbacks such as its bulky size and limited image resolution. In ord
APA, Harvard, Vancouver, ISO, and other styles
9

Razali, Nazirah Mohd, Muhammad Quisar Lokman, Siti Nur Fatin Zuikafly, Fauzan Ahmad, and Hafizal Yahaya. "Simulation of Self-Image Interference in Single Mode-No-Core-Single Mode Fiber with COMSOL Multiphysics®." Journal of Physics: Conference Series 2411, no. 1 (2022): 012019. http://dx.doi.org/10.1088/1742-6596/2411/1/012019.

Full text
Abstract:
Abstract Self-image interference in a single mode-no-core-single mode fiber plays an important role especially for length optimization before acting as a sensor. The interference can be observed through optical simulation software. Past literature has successfully demonstrated the interference via COMSOL Multiphysics®, but the simulation was not restricted to the use of important domains and settings such as perfectly matched layer and surrounding domain causing imprecise simulation results. This paper proposes a simulation of self-image interference in a single mode-no-core-single mode fiber
APA, Harvard, Vancouver, ISO, and other styles
10

Chin, Lixin, Andrea Curatolo, Brendan F. Kennedy, et al. "Analysis of image formation in optical coherence elastography using a multiphysics approach." Biomedical Optics Express 5, no. 9 (2014): 2913. http://dx.doi.org/10.1364/boe.5.002913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!