Academic literature on the topic 'Multiple linear regression mode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiple linear regression mode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiple linear regression mode"
Rust, Henning W., Andy Richling, Peter Bissolli, and Uwe Ulbrich. "Linking teleconnection patterns to European temperature – a multiple linear regression model." Meteorologische Zeitschrift 24, no. 4 (July 21, 2015): 411–23. http://dx.doi.org/10.1127/metz/2015/0642.
Full textIslam, M. Qamarul, and Moti L. Tiku. "Multiple Linear Regression Model Under Nonnormality." Communications in Statistics - Theory and Methods 33, no. 10 (January 2, 2005): 2443–67. http://dx.doi.org/10.1081/sta-200031519.
Full textعبد السلام, ايهاب. "Detecting Outliers In Multiple Linear Regression." Journal of Economics and Administrative Sciences 17, no. 64 (December 1, 2011): 9. http://dx.doi.org/10.33095/jeas.v17i64.900.
Full textZhanatauov, S. U. "INVERSE MODEL OF MULTIPLE LINEAR REGRESSION ANALYSIS." Theoretical & Applied Science 60, no. 04 (April 30, 2018): 201–12. http://dx.doi.org/10.15863/tas.2018.04.60.38.
Full textB., Pratikno, Sulaeman I.P., Sopanti D., and Supriyono. "A BEST MODEL ON MULTIPLE LINEAR REGRESSION." International Journal of Engineering and Technology 12, no. 1 (February 29, 2020): 58–63. http://dx.doi.org/10.21817/ijet/2020/v12i1/201201025.
Full textLi, Yao Xiang, and Li Chun Jiang. "Modeling Wood Crystallinity with Multiple Linear Regression." Key Engineering Materials 480-481 (June 2011): 550–55. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.550.
Full textAlheety, M. I., and S. D. Gore. "A new estimator in multiple linear regression model." Model Assisted Statistics and Applications 3, no. 3 (September 11, 2008): 187–200. http://dx.doi.org/10.3233/mas-2008-3303.
Full textKicsiny, Richárd. "Multiple linear regression based model for solar collectors." Solar Energy 110 (December 2014): 496–506. http://dx.doi.org/10.1016/j.solener.2014.10.003.
Full textIslam, M. Qamarul, and Moti L. Tiku. "Multiple linear regression model with stochastic design variables." Journal of Applied Statistics 37, no. 6 (May 11, 2010): 923–43. http://dx.doi.org/10.1080/02664760902939612.
Full textFerraro, Maria Brigida, and Paolo Giordani. "A multiple linear regression model for imprecise information." Metrika 75, no. 8 (July 23, 2011): 1049–68. http://dx.doi.org/10.1007/s00184-011-0367-3.
Full textDissertations / Theses on the topic "Multiple linear regression mode"
Saleem, Aban, and Jacob Blomgren. "Modelling Pupils’ Grades with Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275672.
Full textDetta examensarbete, inom ämnet för matematisk statistik och industriell ekonomi, genomfördes med syftet att analysera avgångsbetygen för år 9 i den svenska skolan. Syftet var att förstå vilka variabler som hade en statistisk signifikant påverkan på elevers avgångsbetyg, så kommuner kan förstå vilka variabler som är viktiga för att förbättra de genomsnittliga skolresultaten. En regressionsanalys utfördes, på data från Skolverket, för att se vilka variabler som var statistiskt signifikanta. Den slutgiltiga regressionsmodellen, erhållen genom iterativ reducering av variabler, visade att främst strukturella kovariat, som akademisk bakgrund hos elever, andel kvinnliga studenter och andel studenter med svensk bakgrund hade en signifikant betydelse på studenters akademiska resultat. Justerad R2 var 0.5289 för den slutgiltiga modellen. I diskussionen utvärderades modellen utifrån tidigare forskning. Vidare användes teorin om balanserat styrkort, utvecklat av Robert S. Kaplan och David P. Norton, för att diskutera relevanta nyckeltal för att uppnå strategiska mål för skolan.
Gustafsson, Alexander, and Sebastian Wogenius. "Modelling Apartment Prices with the Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146735.
Full textDenna uppsats undersöker faktorer som är av störst statistisk signifikans för priset vid försäljning av lägenheter i Stockholms innerstad. Faktorer som undersöks är adress, yta, balkong, byggår, hiss, kakelugn, våningsnummer, etage, månadsavgift, vindsvåning och antal rum. Utifrån denna undersökning konstrueras en modell för att predicera priset på lägenheter. För att avgöra vilka faktorer som påverkar priset på lägenheter analyseras försäljningsstatistik. Den matematiska metoden som används är multipel linjär regressionsanalys. I en mindre litteratur- och fallstudie, inkluderad i denna uppsats, undersöks sambandet mellan närhet till kollektivtrafik och priset på läagenheter i Stockholm. Resultatet av denna uppsats visar att det är möjligt att konstruera en modell, utifrån de faktorer som undersöks, som kan predicera priset på läagenheter i Stockholms innerstad med en förklaringsgrad på 91 % och ett två miljoner SEK konfidensintervall på 95 %. Vidare dras en slutsats att modellen preciderar lägenheter med ett lägre pris noggrannare. I litteratur- och fallstudien indikerar resultatet stöd för hypotesen att närhet till kollektivtrafik är positivt för priset på en lägenhet. Detta skall dock betraktas med försiktighet med anledning av syftet med modelleringen vilket skiljer sig mellan en individuell tillämpning och en samhällsekonomisk tillämpning.
Alt, Raimund. "Multiple hypotheses testing in the linear regression model with applications to economics and finance /." Göttingen : Cuvillier, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013081924&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textKinns, David Jonathan. "Multiple case influence analysis with particular reference to the linear model." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368427.
Full textTao, Jinxin. "Comparison Between Confidence Intervals of Multiple Linear Regression Model with or without Constraints." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/404.
Full textJanuario, Ana Paula Ferrari. "Análise estatística da produção de vitelão Mertolengo." Master's thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29316.
Full textYeasmin, Mahbuba 1965. "Multiple maxima of likelihood functions and their implications for inference in the general linear regression model." Monash University, Dept. of Econometrics and Business Statistics, 2003. http://arrow.monash.edu.au/hdl/1959.1/5821.
Full textFridgeirsdottir, Gudrun A. "The development of a multiple linear regression model for aiding formulation development of solid dispersions." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52176/.
Full textHuschens, Stefan. "Einführung in die Ökonometrie." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222629.
Full textLöwe, Rakel, and Ida Schneider. "Automatic Differential Diagnosis Model of Patients with Parkinsonian Syndrome : A model using multiple linear regression and classification tree learning." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413638.
Full textBooks on the topic "Multiple linear regression mode"
Shelton, Katherine Lesley. An illustration of heteroscedasticity in the multiple linear regression model. [s.l: The author], 1985.
Find full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0.
Full textZorn, Troy G. Utility of species-specific, multiple linear regression models for prediction of fish assemblages in rivers of Michigan's lower peninsula. Lansing, MI: Michigan Dept. of Natural Resources, Fisheries Division, 2004.
Find full textGelman, Andrew, and Deborah Nolan. Multiple regression and nonlinear models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198785699.003.0010.
Full textHigham, Ronald P. A multiple linear regression model for predicting zone A retention by military occupational specialty. 1986.
Find full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model: Case Study in Perak River, Malaysia. Springer, 2020.
Find full textRoback, Paul, and Julie Legler. Beyond Multiple Linear Regression. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429066665.
Full textVeech, Joseph A. Habitat Ecology and Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198829287.001.0001.
Full textJ, Niccolucci Michael, Schuster Ervin G, and Intermountain Research Station (Ogden, Utah), eds. Identifying proxy sets in multiple linear regression: An aid to better coefficient interpretation. Ogden, UT (324 25th St., Ogden 84401): U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Find full textMiksza, Peter, and Kenneth Elpus. Regression. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199391905.003.0010.
Full textBook chapters on the topic "Multiple linear regression mode"
Ravishanker, Nalini, Zhiyi Chi, and Dipak K. Dey. "Multiple Linear Regression Models." In A First Course in Linear Model Theory, 275–304. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781315156651-9.
Full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. "Fuzzy Multiple Linear Regression." In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model, 11–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0_2.
Full textBaguley, Thom. "Multiple regression and the general linear model." In Serious Stats, 423–71. London: Macmillan Education UK, 2012. http://dx.doi.org/10.1007/978-0-230-36355-7_12.
Full textNakahara, Kazutaka. "G0 beam quality and multiple linear regression corrections." In From Parity Violation to Hadronic Structure and more, 119–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26345-4_27.
Full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. "Water Quality Index Using Fuzzy Regression." In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model, 37–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0_5.
Full textKhine, Kyi Lai Lai, and Thi Thi Soe Nyunt. "Predictive Big Data Analytics Using Multiple Linear Regression Model." In Advances in Intelligent Systems and Computing, 9–19. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0869-7_2.
Full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. "Introduction." In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model, 1–10. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0_1.
Full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. "Water Quality Index (WQI)." In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model, 23–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0_3.
Full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. "Data Collection and Study Sites." In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model, 31–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0_4.
Full textKapić, Zinaid. "Multiple Linear Regression Model for Predicting PM2.5 Concentration in Zenica." In Advanced Technologies, Systems, and Applications V, 335–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54765-3_23.
Full textConference papers on the topic "Multiple linear regression mode"
Castillo-Garit, Juan, Yudith Cañizares-Carmenate, Karel Mena-Ulecia, Yunier Perera-Sardiña, and Francisco Torrens. "Multiple Linear Regression Model of Thermolysin Inhibitors." In MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/mol2net-02-03872.
Full textKim, Hak Soo, Jae Cheol Lee, and Kyu Tae Park. "Motion estimation method using multiple linear regression model." In Electronic Imaging '97, edited by Jan Biemond and Edward J. Delp III. SPIE, 1997. http://dx.doi.org/10.1117/12.263272.
Full textMohammed, Najeebuddin, A. Kusalava Sarma, and Shahid Dhamani. "Multiple Linear Regression Model for Inflation in India." In 2021 2nd International Conference for Emerging Technology (INCET). IEEE, 2021. http://dx.doi.org/10.1109/incet51464.2021.9456277.
Full textXu, Yan, and Shuangting Lan. "Time Series Calibration Model for NO2 Based on Multiple Linear Regression." In 2019 International Conference on Economic Management and Model Engineering (ICEMME). IEEE, 2019. http://dx.doi.org/10.1109/icemme49371.2019.00068.
Full textShuang, Wang. "Research on Enterprise Innovation Performance Based on Multiple Linear Regression Model." In 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME). IEEE, 2020. http://dx.doi.org/10.1109/icemme51517.2020.00057.
Full text"Non-linear multiple regression analysis for predicting seasonal streamflow using large scale climate mode." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.l3.esha.
Full textJinyu, Tian, and Zhao Xin. "Apply multiple linear regression model to predict the audit opinion." In 2009 ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM). IEEE, 2009. http://dx.doi.org/10.1109/cccm.2009.5267661.
Full textShutenko, Oleg, and Serhii Ponomarenko. "Diagnostics of Transformer Oils Using the Multiple Linear Regression Model." In 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). IEEE, 2020. http://dx.doi.org/10.1109/paep49887.2020.9240875.
Full textLi, Zhuoshi, Xuejun Cao, Xiaoqi Ding, and Hang Chen. "Prediction Model of Multiple Linear Regression Analysis in Grain Production." In 5th International Conference on Information Engineering for Mechanics and Materials. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icimm-15.2015.233.
Full textCunningham, Charles Franklin, Lisa Cooley, Gregory Wozniak, and Jim Pancake. "Using Multiple Linear Regression To Model EURs of Horizontal Marcellus Wells." In SPE Eastern Regional Meeting. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/161343-ms.
Full textReports on the topic "Multiple linear regression mode"
Kubik, Harold. MLRP, Multiple Linear Regression Program. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada204565.
Full text