Academic literature on the topic 'Multiscale homogenization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale homogenization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiscale homogenization"
NGUYEN, VINH PHU, MARTIJN STROEVEN, and LAMBERTUS JOHANNES SLUYS. "MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS." Journal of Multiscale Modelling 03, no. 04 (December 2011): 229–70. http://dx.doi.org/10.1142/s1756973711000509.
Full textLukkassen, Dag, Annette Meidell, and Peter Wall. "Multiscale homogenization of monotone operators." Discrete & Continuous Dynamical Systems - A 22, no. 3 (2008): 711–27. http://dx.doi.org/10.3934/dcds.2008.22.711.
Full textSokolov, Alexander Pavlovich, and Anton Yurievich Pershin. "Computer-Aided Design of Composite Materials Using Reversible Multiscale Homogenization and Graph-Based Software Engineering." Key Engineering Materials 779 (September 2018): 11–18. http://dx.doi.org/10.4028/www.scientific.net/kem.779.11.
Full textHedjazian, N., Y. Capdeville, and T. Bodin. "Multiscale seismic imaging with inverse homogenization." Geophysical Journal International 226, no. 1 (March 27, 2021): 676–91. http://dx.doi.org/10.1093/gji/ggab121.
Full textSvanstedt, Nils. "Multiscale stochastic homogenization of monotone operators." Networks & Heterogeneous Media 2, no. 1 (2007): 181–92. http://dx.doi.org/10.3934/nhm.2007.2.181.
Full textImkeller, Peter, N. Sri Namachchivaya, Nicolas Perkowski, and Hoong C. Yeong. "A Homogenization Approach to Multiscale Filtering." Procedia IUTAM 5 (2012): 34–45. http://dx.doi.org/10.1016/j.piutam.2012.06.005.
Full textHeida, Martin, Ralf Kornhuber, and Joscha Podlesny. "Fractal Homogenization of Multiscale Interface Problems." Multiscale Modeling & Simulation 18, no. 1 (January 2020): 294–314. http://dx.doi.org/10.1137/18m1204759.
Full textYoshimura, Akinori, Anthony M. Waas, and Yoshiyasu Hirano. "Multiscale homogenization for nearly periodic structures." Composite Structures 153 (October 2016): 345–55. http://dx.doi.org/10.1016/j.compstruct.2016.06.002.
Full textChen, Zhangxin. "Multiscale methods for elliptic homogenization problems." Numerical Methods for Partial Differential Equations 22, no. 2 (2006): 317–60. http://dx.doi.org/10.1002/num.20099.
Full textSakata, Seiichiro, and Fumihiro Ashida. "Stochastic Microscopic Stress Analysis of a Composite Material via Multiscale Analysis Considering Microscopic Uncertainty." Key Engineering Materials 452-453 (November 2010): 277–80. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.277.
Full textDissertations / Theses on the topic "Multiscale homogenization"
Persson, Jens. "Selected Topics in Homogenization." Doctoral thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-16230.
Full textHuvudsakligt fokus i avhandlingen ligger på homogeniseringen av vissa elliptiska och paraboliska problem. Mer precist så homogeniserar vi: ickeperiodiska linjära elliptiska problem i två dimensioner med homotetisk skalning; två typer av evolutionsmultiskaliga linjära paraboliska problem, en med två mikroskopiska skalor i både rum och tid där de senare ges i form av en tvåparameterfamilj, och en med två mikroskopiska skalor i rum och tre i tid som ges i form av fixa potensfunktioner; samt, slutligen, evolutionsmultiskaliga monotona paraboliska problem med en mikroskopisk skala i rum och ett godtyckligt antal i tid som inte är begränsade till att vara givna i form av potensfunktioner. För att kunna uppnå homogeniseringsresultat för dessa problem så studerar och utvecklar vi teorin för tvåskalekonvergens och besläktade begrepp. Speciellt så utvecklar vi begreppet mycket svag tvåskalekonvergens med generaliseringar, och vi studerar en tillämpningav denna konvergenstyp där den används för att detektera förekomsten av heterogenitetsskalor.
Gathier, Benjamin. "Multiscale strength homogenization : application to shale nanoindentation." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43049.
Full textIncludes bibliographical references (p. 236-246).
Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this thesis, we propose a two-scale non-linear procedure for the homogenization of their yield design strength properties, based on the Linear Comparison Composite Theory. At Level 0, the intrinsic friction of shales is captured via a cohesive-frictional strength criterion for the clay particles (Drucker-Prager). Level I is composed of a porous clay phase and Level II incorporates silt and quartz grains. Homogenization yields either an elliptical or an hyperbolc strength criterion, depending on the packing density of the porous clay phase. These criteria are employed in an original reverse algorithm of indentation hardness to develop hardness-packing density scaling relations that allow a separation of constituent properties and volume fraction and morphology parameters, including interface conditions between the porous clay matrix and the (rigid) silt inclusions. The application of this algorithm to 11 shale samples from the GeoGenome project data base allows us to identify: (i) an invariant value of the solid hardness of clay particles, which is independent of clay mineralogy, porosity, etc.; and (ii) shale independent scaling relations of the cohesion and of the friction coefficient with the mean clay packing density, which provides some evidence that the elementary building block of shale is a clay polycrystal. The use of these scaling relations in the Level II-homogenization provides a first-order model for the prediction of the macroscopic strength properties of shale, based on only two parameters that delineate shale's macroscopic diversity: clay packing density and silt inclusion volume fraction.
by Benjamin Gathier.
S.M.
Covezzi, Federica <1990>. "Homogenization of nonlinear composites for multiscale analysis." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8608/1/covezzi_federica_tesi.pdf.
Full textJohnsen, Pernilla. "Homogenization of Partial Differential Equations using Multiscale Convergence Methods." Licentiate thesis, Mittuniversitetet, Institutionen för matematik och ämnesdidaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42036.
Full textCASTROGIOVANNI, ALFREDO. "Reduced Order Homogenization for Multiscale Analysis of Nonlinear Composites." Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1447832.
Full textArjmand, Doghonay. "Analysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations." Doctoral thesis, KTH, Numerisk analys, NA, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160122.
Full textQC 20150216
Multiscale methods for wave propagation
Sviercoski, Rosangela. "Multiscale Analytical Solutions and Homogenization of n-Dimensional Generalized Elliptic Equations." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/194912.
Full textFerreira, Rita Alexandra Gonçalves. "Spectral and homogenization problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/7856.
Full textFundação para a Ciência e a Tecnologia through the Carnegie Mellon | Portugal Program under Grant SFRH/BD/35695/2007, the Financiamento Base 20010 ISFL–1–297, PTDC/MAT/109973/2009 and UTA
Goncalves-Ferreira, Rita Alexandria. "Spectral and Homogenization Problems." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/83.
Full textNika, Grigor. "Multiscale analysis of emulsions and suspensions with surface effects." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/146.
Full textBooks on the topic "Multiscale homogenization"
Bogdan, Vernescu, ed. Homogenization methods for multiscale mechanics. Singapore: World Scientific, 2010.
Find full textM, Stuart A., ed. Multiscale methods: Averaging and homogenization. New York: Springer, 2008.
Find full textBlanc, Xavier, and Claude Le Bris. Homogenization Theory for Multiscale Problems. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21833-0.
Full textBerlyand, Leonid, and Volodymyr Rybalko. Getting Acquainted with Homogenization and Multiscale. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01777-4.
Full textBailakanavar, Mahesh Raju. Space-Time Multiscale-Multiphysics Homogenization Methods for Heterogeneous Materials. [New York, N.Y.?]: [publisher not identified], 2013.
Find full text1945-, Engquist Björn, Lötstedt Per, Runborg Olof, and Multiscale Methods in Science and Engineering (2004 : Uppsala, Sweden), eds. Multiscale methods in science and engineering. Berlin: Springer, 2005.
Find full textArtz, Timothy Steven. Modeling Lifetime Performance of Ceramic Matrix Composites with Reduced Order Homogenization Multiscale Methods. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textConference on Multiscale Problems in Science and Technology (2000 Dubrovnik, Croatia). Multiscale problems in science and technology: Challenges to mathematical analysis and perspectives. Berlin: Springer, 2002.
Find full text1962-, Antonić N., ed. Multiscale problems in science and technology : challenges to mathematical analysis and perspectives : proceedings of the Conference on Multiscale Problems in Science and Technology, Dubrovnik, Croatia, 3-9 September 2000. Berlin: Springer, 2000.
Find full textCoupled Systems: Theory, Models, and Applications in Engineering. Boca Raton: CRC Press, 2014.
Find full textBook chapters on the topic "Multiscale homogenization"
Chung, Eric, Yalchin Efendiev, and Thomas Y. Hou. "Homogenization and numerical homogenization of linear equations." In Multiscale Model Reduction, 35–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20409-8_2.
Full textChung, Eric, Yalchin Efendiev, and Thomas Y. Hou. "Homogenization and numerical homogenization of nonlinear equations." In Multiscale Model Reduction, 385–95. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20409-8_13.
Full textEngquist, Björn, and Olof Runborg. "Projection Generated Homogenization." In Multiscale Problems in Science and Technology, 129–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56200-6_4.
Full textBlanc, Xavier, and Claude Le Bris. "Homogenization in Dimension 1." In Homogenization Theory for Multiscale Problems, 61–98. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21833-0_2.
Full textRodríguez-Ramos, Reinaldo, Ariel Ramírez-Torres, Julián Bravo-Castillero, Raúl Guinovart-Díaz, David Guinovart-Sanjuán, Oscar L. Cruz-González, Federico J. Sabina, José Merodio, and Raimondo Penta. "Multiscale Homogenization for Linear Mechanics." In Constitutive Modelling of Solid Continua, 357–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31547-4_12.
Full textDesbrun, Mathieu, Roger D. Donaldson, and Houman Owhadi. "Modeling Across Scales: Discrete Geometric Structures in Homogenization and Inverse Homogenization." In Multiscale Analysis and Nonlinear Dynamics, 19–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671632.ch02.
Full textBerlyand, Leonid, and Volodymyr Rybalko. "Introduction to Stochastic Homogenization." In Getting Acquainted with Homogenization and Multiscale, 85–101. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01777-4_8.
Full textGeers, M. G. D., V. G. Kouznetsova, and W. A. M. Brekelmans. "Computational homogenization." In Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, 327–94. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0283-1_7.
Full textBlanc, Xavier, and Claude Le Bris. "Beyond the Diffusion Equation and Miscellaneous Topics." In Homogenization Theory for Multiscale Problems, 363–421. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21833-0_6.
Full textBlanc, Xavier, and Claude Le Bris. "Numerical Approaches." In Homogenization Theory for Multiscale Problems, 257–362. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21833-0_5.
Full textConference papers on the topic "Multiscale homogenization"
Cherkaev, E., S. Guenneau, H. Hutridurga, and N. Wellander. "Quasiperiodic Composites: Multiscale Reiterated Homogenization." In 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2019. http://dx.doi.org/10.1109/metamaterials.2019.8900926.
Full textDrago, Anthony S., Marek-Jerzy Pindera, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "A Locally-Exact Homogenization Approach for Periodic Heterogeneous Materials." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896777.
Full textMacri, Michael F., Andrew G. Littlefield, Joshua B. Root, and Lucas B. Smith. "Modeling Automatic Detection of Critical Regions in Composite Pressure Vessel Subjected to High Pressure." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84168.
Full textKe, L., and F. van den Meer. "Multiscale Modeling of Composite Laminates Delamination via Computational Homogenization." In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.040.
Full textYuan, Chongxi, and Xingchen Liu. "Fast Two-Scale Analysis via Clustering." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-68633.
Full textKildishev, Alexander V., Zhaxylyk Kudyshev, Ludmila J. Prokopeva, Derek A. Olson, William D. Henshaw, Sawyer D. Campbell, and Douglas H. Werner. "Multiscale design of optical metafilms with bianisotropic homogenization (Conference Presentation)." In Metamaterials, Metadevices, and Metasystems 2018, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2018. http://dx.doi.org/10.1117/12.2320065.
Full textChung, Peter, and Raju Namburu. "A Computational Framework for a Multiscale Continuum-Atomistic Homogenization Method." In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1655.
Full textRezakhani, Roozbeh, Mohammed Alnaggar, and Gianluca Cusatis. "Multiscale Homogenization Modeling of Alkali-Silica-Reaction Damage in Concrete." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.285.
Full textOLAYA, MICHAEL N., and MARIANNA MAIARÙ. "HOMOGENIZATION METHODS FOR MULTISCALE PROCESS MODELING THROUGH FULL FACTORIAL DESIGN." In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36605.
Full textNajmon, Joel C., Homero Valladares, and Andres Tovar. "Multiscale Topology Optimization With Gaussian Process Regression Models." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-66758.
Full textReports on the topic "Multiscale homogenization"
X. Frank Xu. Numerical Stochastic Homogenization Method and Multiscale Stochastic Finite Element Method - A Paradigm for Multiscale Computation of Stochastic PDEs. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/1036255.
Full text