Journal articles on the topic 'Multitask learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multitask learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Qiuhua Liu, Xuejun Liao, Hui Li, J. R. Stack, and L. Carin. "Semisupervised Multitask Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence 31, no. 6 (2009): 1074–86. http://dx.doi.org/10.1109/tpami.2008.296.
Full textLi, Zhen Xing, and Wei Hua Li. "Multitask Similarity Cluster." Advanced Materials Research 765-767 (September 2013): 1662–66. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.1662.
Full textYang, Peng, Peilin Zhao, Jiayu Zhou, and Xin Gao. "Confidence Weighted Multitask Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 5636–43. http://dx.doi.org/10.1609/aaai.v33i01.33015636.
Full textLi, Guangxia, Steven C. H. Hoi, Kuiyu Chang, Wenting Liu, and Ramesh Jain. "Collaborative Online Multitask Learning." IEEE Transactions on Knowledge and Data Engineering 26, no. 8 (2014): 1866–76. http://dx.doi.org/10.1109/tkde.2013.139.
Full textLi, Zhen Xing, and Wei Hua Li. "Multitask Fuzzy Learning with Rule Weight." Advanced Materials Research 774-776 (September 2013): 1883–86. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.1883.
Full textYin, Jichong, Fang Wu, Yue Qiu, Anping Li, Chengyi Liu, and Xianyong Gong. "A Multiscale and Multitask Deep Learning Framework for Automatic Building Extraction." Remote Sensing 14, no. 19 (2022): 4744. http://dx.doi.org/10.3390/rs14194744.
Full textMenghi, Nicholas, Kemal Kacar, and Will Penny. "Multitask learning over shared subspaces." PLOS Computational Biology 17, no. 7 (2021): e1009092. http://dx.doi.org/10.1371/journal.pcbi.1009092.
Full textKato, Tsuyoshi, Hisashi Kashima, Masashi Sugiyama, and Kiyoshi Asai. "Conic Programming for Multitask Learning." IEEE Transactions on Knowledge and Data Engineering 22, no. 7 (2010): 957–68. http://dx.doi.org/10.1109/tkde.2009.142.
Full textKong, Yu, Ming Shao, Kang Li, and Yun Fu. "Probabilistic Low-Rank Multitask Learning." IEEE Transactions on Neural Networks and Learning Systems 29, no. 3 (2018): 670–80. http://dx.doi.org/10.1109/tnnls.2016.2641160.
Full textSzyszkowska, Joanna, Anna Kinga Zduńczyk-Kłos, Antonina Doroszewska, Barbara Banaszczak, Milena Michalska, and Katarzyna Potocka. "Zdolność do skupienia uwagi i wielozadaniowości u studentów uczelni wyższych w okresie pandemicznej nauki na odległość." Kwartalnik Pedagogiczny 68, no. 3 (2023): 71–90. http://dx.doi.org/10.31338/2657-6007.kp.2023-3.4.
Full textSaylam, Berrenur, and Özlem Durmaz İncel. "Multitask Learning for Mental Health: Depression, Anxiety, Stress (DAS) Using Wearables." Diagnostics 14, no. 5 (2024): 501. http://dx.doi.org/10.3390/diagnostics14050501.
Full textSun, Kai, Richong Zhang, Samuel Mensah, Yongyi Mao, and Xudong Liu. "Progressive Multi-task Learning with Controlled Information Flow for Joint Entity and Relation Extraction." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 15 (2021): 13851–59. http://dx.doi.org/10.1609/aaai.v35i15.17632.
Full textYu, Qingtian, Haopeng Wang, Fedwa Laamarti, and Abdulmotaleb El Saddik. "Deep Learning-Enabled Multitask System for Exercise Recognition and Counting." Multimodal Technologies and Interaction 5, no. 9 (2021): 55. http://dx.doi.org/10.3390/mti5090055.
Full textKim, Hyuncheol, and Joonki Paik. "Low-Rank Representation-Based Object Tracking Using Multitask Feature Learning with Joint Sparsity." Abstract and Applied Analysis 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/147353.
Full textSu, Fang, Hai-Yang Shang, and Jing-Yan Wang. "Low-Rank Deep Convolutional Neural Network for Multitask Learning." Computational Intelligence and Neuroscience 2019 (May 20, 2019): 1–10. http://dx.doi.org/10.1155/2019/7410701.
Full textPan, Haixia, Yanan Li, Hongqiang Wang, and Xiaomeng Tian. "Railway Obstacle Intrusion Detection Based on Convolution Neural Network Multitask Learning." Electronics 11, no. 17 (2022): 2697. http://dx.doi.org/10.3390/electronics11172697.
Full textJaśkowski, Wojciech, Krzysztof Krawiec, and Bartosz Wieloch. "Multitask Visual Learning Using Genetic Programming." Evolutionary Computation 16, no. 4 (2008): 439–59. http://dx.doi.org/10.1162/evco.2008.16.4.439.
Full textChen, Jiangtao, Zijia Wang, and Zheng Kou. "Multitask Level-Based Learning Swarm Optimizer." Biomimetics 9, no. 11 (2024): 664. http://dx.doi.org/10.3390/biomimetics9110664.
Full textSkolidis, Grigorios, and Guido Sanguinetti. "Semisupervised Multitask Learning With Gaussian Processes." IEEE Transactions on Neural Networks and Learning Systems 24, no. 12 (2013): 2101–12. http://dx.doi.org/10.1109/tnnls.2013.2272403.
Full textLi, Cong, Michael Georgiopoulos, and Georgios C. Anagnostopoulos. "Pareto-Path Multitask Multiple Kernel Learning." IEEE Transactions on Neural Networks and Learning Systems 26, no. 1 (2015): 51–61. http://dx.doi.org/10.1109/tnnls.2014.2309939.
Full textLee, Jeong Yoon, Youngmin Oh, Sung Shin Kim, Robert A. Scheidt, and Nicolas Schweighofer. "Optimal Schedules in Multitask Motor Learning." Neural Computation 28, no. 4 (2016): 667–85. http://dx.doi.org/10.1162/neco_a_00823.
Full textDahan, Elay, and Israel Cohen. "Deep-Learning-Based Multitask Ultrasound Beamforming." Information 14, no. 10 (2023): 582. http://dx.doi.org/10.3390/info14100582.
Full textZhang, Wenzheng, Chenyan Xiong, Karl Stratos, and Arnold Overwijk. "Improving Multitask Retrieval by Promoting Task Specialization." Transactions of the Association for Computational Linguistics 11 (2023): 1201–12. http://dx.doi.org/10.1162/tacl_a_00597.
Full textArefeen, Asiful, and Hassan Ghasemzadeh. "Cost-Effective Multitask Active Learning in Wearable Sensor Systems." Sensors 25, no. 5 (2025): 1522. https://doi.org/10.3390/s25051522.
Full textWang, Xiaoqi, Yingjie Cheng, Yaning Yang, Yue Yu, Fei Li, and Shaoliang Peng. "Multitask joint strategies of self-supervised representation learning on biomedical networks for drug discovery." Nature Machine Intelligence 5, no. 4 (2023): 445–56. http://dx.doi.org/10.1038/s42256-023-00640-6.
Full textLi, Lu, Yongjiu Dai, Zhongwang Wei, et al. "Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting." Journal of Hydrometeorology 25, no. 1 (2024): 89–103. http://dx.doi.org/10.1175/jhm-d-23-0073.1.
Full textForouzannezhad, Parisa, Dominic Maes, Daniel S. Hippe, et al. "Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer." Cancers 14, no. 5 (2022): 1228. http://dx.doi.org/10.3390/cancers14051228.
Full textTseng, Shao-Yen, Brian Baucom, and Panayiotis Georgiou. "Unsupervised online multitask learning of behavioral sentence embeddings." PeerJ Computer Science 5 (June 10, 2019): e200. http://dx.doi.org/10.7717/peerj-cs.200.
Full textYan, Yuguang, Gan Li, Qingliang Li, and Jinlong Zhu. "Enhancing Hydrological Variable Prediction through Multitask LSTM Models." Water 16, no. 15 (2024): 2156. http://dx.doi.org/10.3390/w16152156.
Full textWang, Yan, Lei Zhang, Lituan Wang, and Zizhou Wang. "Multitask Learning for Object Localization With Deep Reinforcement Learning." IEEE Transactions on Cognitive and Developmental Systems 11, no. 4 (2019): 573–80. http://dx.doi.org/10.1109/tcds.2018.2885813.
Full textZhang, Linjuan, Jiaqi Shi, Lili Wang, and Changqing Xu. "Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System." Entropy 22, no. 12 (2020): 1355. http://dx.doi.org/10.3390/e22121355.
Full textZheng, Weiping, Zhenyao Mo, and Gansen Zhao. "Clustering by Errors: A Self-Organized Multitask Learning Method for Acoustic Scene Classification." Sensors 22, no. 1 (2021): 36. http://dx.doi.org/10.3390/s22010036.
Full textFlamary, R., N. Jrad, R. Phlypo, M. Congedo, and A. Rakotomamonjy. "Mixed-Norm Regularization for Brain Decoding." Computational and Mathematical Methods in Medicine 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/317056.
Full textWang, Junkai, Lianlei Lin, Zaiming Teng, and Yu Zhang. "Multitask Learning Based on Improved Uncertainty Weighted Loss for Multi-Parameter Meteorological Data Prediction." Atmosphere 13, no. 6 (2022): 989. http://dx.doi.org/10.3390/atmos13060989.
Full textCui, Mingxiu. "DQN and dynamic feedback for multitask scheduling optimization in engineering management." International Journal of Low-Carbon Technologies 19 (2024): 2279–86. http://dx.doi.org/10.1093/ijlct/ctae163.
Full textLiu, Jiafei, Qingsong Wang, Jianda Cheng, Deliang Xiang, and Wenbo Jing. "Multitask Learning-Based for SAR Image Superpixel Generation." Remote Sensing 14, no. 4 (2022): 899. http://dx.doi.org/10.3390/rs14040899.
Full textFang, Cheng, Feifei Liang, Tianchi Li, and Fangheng Guan. "Learning Modality Consistency and Difference Information with Multitask Learning for Multimodal Sentiment Analysis." Future Internet 16, no. 6 (2024): 213. http://dx.doi.org/10.3390/fi16060213.
Full textZhao, Zhicheng, Ze Luo, Jian Li, Can Chen, and Yingchao Piao. "When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene Classification Based on a Multitask Learning Framework." Remote Sensing 12, no. 20 (2020): 3276. http://dx.doi.org/10.3390/rs12203276.
Full textNimbal, Pratik, and Gopal Krishna Shyam. "Multitask sparse Learning based Facial Expression Classification." International Journal of Computer Sciences and Engineering 7, no. 6 (2019): 197–202. http://dx.doi.org/10.26438/ijcse/v7i6.197202.
Full textYao, Chunhua, Xinyu Song, Xuelei Zhang, Weicheng Zhao, and Ao Feng. "Multitask Learning for Aspect-Based Sentiment Classification." Scientific Programming 2021 (November 29, 2021): 1–9. http://dx.doi.org/10.1155/2021/2055555.
Full textJin, Ran, Tengda Hou, Tongrui Yu, Min Luo, and Haoliang Hu. "A Multitask Deep Learning Framework for DNER." Computational Intelligence and Neuroscience 2022 (April 16, 2022): 1–10. http://dx.doi.org/10.1155/2022/3321296.
Full textXiong, Fangzhou, Biao Sun, Xu Yang, et al. "Guided Policy Search for Sequential Multitask Learning." IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, no. 1 (2019): 216–26. http://dx.doi.org/10.1109/tsmc.2018.2800040.
Full textPillonetto, G., F. Dinuzzo, and G. De Nicolao. "Bayesian Online Multitask Learning of Gaussian Processes." IEEE Transactions on Pattern Analysis and Machine Intelligence 32, no. 2 (2010): 193–205. http://dx.doi.org/10.1109/tpami.2008.297.
Full textSingh, Loitongbam Gyanendro, Akash Anil, and Sanasam Ranbir Singh. "SHE: Sentiment Hashtag Embedding Through Multitask Learning." IEEE Transactions on Computational Social Systems 7, no. 2 (2020): 417–24. http://dx.doi.org/10.1109/tcss.2019.2962718.
Full textStambrouski, Tsimafei, and Rodrigo Alves. "Multitask learning for cognitive sciences triplet analysis." Expert Systems with Applications 267 (April 2025): 126187. https://doi.org/10.1016/j.eswa.2024.126187.
Full textBarbour, Dennis, Zhiting Zhou, Dom Marticorena, et al. "Multitask Machine Learning of Contrast Sensitivity Functions." Journal of Vision 24, no. 10 (2024): 1082. http://dx.doi.org/10.1167/jov.24.10.1082.
Full textQian Xu, Sinno Jialin Pan, Hannah Hong Xue, and Qiang Yang. "Multitask Learning for Protein Subcellular Location Prediction." IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, no. 3 (2011): 748–59. http://dx.doi.org/10.1109/tcbb.2010.22.
Full textGibert, Xavier, Vishal M. Patel, and Rama Chellappa. "Deep Multitask Learning for Railway Track Inspection." IEEE Transactions on Intelligent Transportation Systems 18, no. 1 (2017): 153–64. http://dx.doi.org/10.1109/tits.2016.2568758.
Full textHabic, Vuk, Alexander Semenov, and Eduardo L. Pasiliao. "Multitask deep learning for native language identification." Knowledge-Based Systems 209 (December 2020): 106440. http://dx.doi.org/10.1016/j.knosys.2020.106440.
Full textRamsundar, Bharath, Bowen Liu, Zhenqin Wu, et al. "Is Multitask Deep Learning Practical for Pharma?" Journal of Chemical Information and Modeling 57, no. 8 (2017): 2068–76. http://dx.doi.org/10.1021/acs.jcim.7b00146.
Full text