Journal articles on the topic 'Multitype Galton-Watson process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 journal articles for your research on the topic 'Multitype Galton-Watson process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sagitov, Serik, and Maria Conceição Serra. "Multitype Bienaymé–Galton–Watson processes escaping extinction." Advances in Applied Probability 41, no. 01 (2009): 225–46. http://dx.doi.org/10.1017/s0001867800003207.
Full textSagitov, Serik, and Maria Conceição Serra. "Multitype Bienaymé–Galton–Watson processes escaping extinction." Advances in Applied Probability 41, no. 1 (2009): 225–46. http://dx.doi.org/10.1239/aap/1240319583.
Full textBiggins, J. D., and A. E. Kyprianou. "Measure change in multitype branching." Advances in Applied Probability 36, no. 02 (2004): 544–81. http://dx.doi.org/10.1017/s0001867800013604.
Full textBiggins, J. D., and A. E. Kyprianou. "Measure change in multitype branching." Advances in Applied Probability 36, no. 2 (2004): 544–81. http://dx.doi.org/10.1239/aap/1086957585.
Full textSpåtaru, Aurel. "A maximum sequence in a critical multitype branching process." Journal of Applied Probability 28, no. 4 (1991): 893–97. http://dx.doi.org/10.2307/3214692.
Full textSpåtaru, Aurel. "A maximum sequence in a critical multitype branching process." Journal of Applied Probability 28, no. 04 (1991): 893–97. http://dx.doi.org/10.1017/s0021900200042807.
Full textDoku-Amponsah, Kwabena. "LOCAL LARGE DEVIATIONS: McMILLIAN THEOREM FOR MULTITYPE GALTON-WATSON PROCESS." Far East Journal of Mathematical Sciences (FJMS) 102, no. 10 (2017): 2307–19. http://dx.doi.org/10.17654/ms102102307.
Full textDyakonova, E. E. "On a multitype Galton-Watson process with state-dependent immigration." Journal of Mathematical Sciences 99, no. 3 (2000): 1244–49. http://dx.doi.org/10.1007/bf02674083.
Full textCerf, Raphaël, and Joseba Dalmau. "Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector." ESAIM: Probability and Statistics 23 (2019): 797–802. http://dx.doi.org/10.1051/ps/2019007.
Full textPrehn, Uwe, and Ines Langer. "The Expected Source Time of a Subcritical Multitype Galton-Watson Process." Mathematische Nachrichten 138, no. 1 (1988): 83–92. http://dx.doi.org/10.1002/mana.19881380106.
Full textPénisson, Sophie. "Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process." Latin American Journal of Probability and Mathematical Statistics 13, no. 1 (2016): 223. http://dx.doi.org/10.30757/alea.v13-09.
Full textJoffe, A., and W. A. O'n Waugh. "The kin number problem in a multitype Galton–Watson population." Journal of Applied Probability 22, no. 1 (1985): 37–47. http://dx.doi.org/10.2307/3213746.
Full textJoffe, A., and W. A. O'n Waugh. "The kin number problem in a multitype Galton–Watson population." Journal of Applied Probability 22, no. 01 (1985): 37–47. http://dx.doi.org/10.1017/s0021900200028990.
Full textKlebaner, Fima C. "Linear growth in near-critical population-size-dependent multitype Galton–Watson processes." Journal of Applied Probability 26, no. 3 (1989): 431–45. http://dx.doi.org/10.2307/3214402.
Full textKlebaner, Fima C. "Linear growth in near-critical population-size-dependent multitype Galton–Watson processes." Journal of Applied Probability 26, no. 03 (1989): 431–45. http://dx.doi.org/10.1017/s0021900200038043.
Full textKhaįrullin, R. H. "On estimating parameters of a multitype Galton-Watson process by ϕ-branching processes". Siberian Mathematical Journal 33, № 4 (1992): 703–13. http://dx.doi.org/10.1007/bf00971136.
Full textHong, Jyy-I. "Coalescence on critical and subcritical multitype branching processes." Journal of Applied Probability 53, no. 3 (2016): 802–17. http://dx.doi.org/10.1017/jpr.2016.41.
Full textGadag, V. G., and M. B. Rajarshi. "Multitype branching processes based on exact progeny lengths of particles in a Galton-Watson branching process." Journal of Applied Probability 26, no. 1 (1989): 1–8. http://dx.doi.org/10.2307/3214311.
Full textGadag, V. G., and M. B. Rajarshi. "Multitype branching processes based on exact progeny lengths of particles in a Galton-Watson branching process." Journal of Applied Probability 26, no. 01 (1989): 1–8. http://dx.doi.org/10.1017/s0021900200041747.
Full textGadag, V. G., and M. B. Rajarshi. "On multitype processes based on progeny length of particles of a supercritical Galton-Watson process." Journal of Applied Probability 24, no. 1 (1987): 14–24. http://dx.doi.org/10.2307/3214055.
Full textGadag, V. G., and M. B. Rajarshi. "On multitype processes based on progeny length of particles of a supercritical Galton-Watson process." Journal of Applied Probability 24, no. 01 (1987): 14–24. http://dx.doi.org/10.1017/s0021900200030576.
Full textSeneta, E., and R. L. Tweedie. "Moments for stationary and quasi-stationary distributions of markov chains." Journal of Applied Probability 22, no. 1 (1985): 148–55. http://dx.doi.org/10.2307/3213754.
Full textSeneta, E., and R. L. Tweedie. "Moments for stationary and quasi-stationary distributions of markov chains." Journal of Applied Probability 22, no. 01 (1985): 148–55. http://dx.doi.org/10.1017/s0021900200029077.
Full textBhattacharya, Ayan, Krishanu Maulik, Zbigniew Palmowski, and Parthanil Roy. "Extremes of multitype branching random walks: heaviest tail wins." Advances in Applied Probability 51, no. 2 (2019): 514–40. http://dx.doi.org/10.1017/apr.2019.20.
Full textReder, Christine. "Transient behaviour of a Galton–Watson process with a large number of types." Journal of Applied Probability 40, no. 04 (2003): 1007–30. http://dx.doi.org/10.1017/s002190020002026x.
Full textReder, Christine. "Transient behaviour of a Galton–Watson process with a large number of types." Journal of Applied Probability 40, no. 4 (2003): 1007–30. http://dx.doi.org/10.1239/jap/1067436097.
Full textDalmau, Joseba. "Distribution of the quasispecies for a Galton–Watson process on the sharp peak landscape." Journal of Applied Probability 53, no. 2 (2016): 606–13. http://dx.doi.org/10.1017/jpr.2016.25.
Full textCarvalho, Maria Lucília. "A joint estimator for the eigenvalues of the reproduction mean matrix of a multitype Galton-Watson process." Linear Algebra and its Applications 264 (October 1997): 189–203. http://dx.doi.org/10.1016/s0024-3795(97)82946-1.
Full textWang, Hua Ming. "On total progeny of multitype Galton-Watson process and the first passage time of random walk on lattice." Acta Mathematica Sinica, English Series 30, no. 12 (2014): 2161–72. http://dx.doi.org/10.1007/s10114-014-3650-1.
Full textDUNN, A. M., R. S. TERRY, and D. E. TANEYHILL. "Within-host transmission strategies of transovarial, feminizing parasites of Gammarus duebeni." Parasitology 117, no. 1 (1998): 21–30. http://dx.doi.org/10.1017/s0031182098002753.
Full textVATUTIN, V. A., and N. M. YANEV. "Multitype critical Galton-Watson branching process with final types." Discrete Mathematics and Applications 1, no. 3 (1991). http://dx.doi.org/10.1515/dma.1991.1.3.321.
Full text