Journal articles on the topic 'Multivalent interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multivalent interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Errington, Wesley J., Bence Bruncsics, and Casim A. Sarkar. "Mechanisms of noncanonical binding dynamics in multivalent protein–protein interactions." Proceedings of the National Academy of Sciences 116, no. 51 (November 27, 2019): 25659–67. http://dx.doi.org/10.1073/pnas.1902909116.
Full textKauscher, Ulrike, and Bart Jan Ravoo. "Mannose-decorated cyclodextrin vesicles: The interplay of multivalency and surface density in lectin–carbohydrate recognition." Beilstein Journal of Organic Chemistry 8 (September 17, 2012): 1543–51. http://dx.doi.org/10.3762/bjoc.8.175.
Full textZhulina, E. B., O. V. Borisov, and T. M. Birshtein. "Polyelectrolyte Brush Interaction with Multivalent Ions." Macromolecules 32, no. 24 (November 1999): 8189–96. http://dx.doi.org/10.1021/ma981811e.
Full textSchamel, Wolfgang W. A., Ignacio Arechaga, Ruth M. Risueño, Hisse M. van Santen, Pilar Cabezas, Cristina Risco, José M. Valpuesta, and Balbino Alarcón. "Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response." Journal of Experimental Medicine 202, no. 4 (August 8, 2005): 493–503. http://dx.doi.org/10.1084/jem.20042155.
Full textTang, Jo Sing Julia, Sophia Rosencrantz, Lucas Tepper, Sany Chea, Stefanie Klöpzig, Anne Krüger-Genge, Joachim Storsberg, and Ruben R. Rosencrantz. "Functional Glyco-Nanogels for Multivalent Interaction with Lectins." Molecules 24, no. 10 (May 15, 2019): 1865. http://dx.doi.org/10.3390/molecules24101865.
Full textWang, Yanyan, Srinivas Chalagalla, Tiehai Li, Xue-long Sun, Wei Zhao, Peng G. Wang, and Xiangqun Zeng. "Multivalent interaction-based carbohydrate biosensors for signal amplification." Biosensors and Bioelectronics 26, no. 3 (November 15, 2010): 996–1001. http://dx.doi.org/10.1016/j.bios.2010.08.025.
Full textTõugu, V., T. Kesvatera, A. Lääne, and A. Aaviksaa. "Acetylcholinesterase as polyelectrolyte: interaction with multivalent cationic inhibitors." Biochimica et Biophysica Acta (BBA) - General Subjects 1157, no. 3 (July 1993): 199–203. http://dx.doi.org/10.1016/0304-4165(93)90065-g.
Full textBrissonnet, Yoan, Coralie Assailly, Amélie Saumonneau, Julie Bouckaert, Mike Maillasson, Clémence Petitot, Benoit Roubinet, et al. "Multivalent Thiosialosides and Their Synergistic Interaction with Pathogenic Sialidases." Chemistry - A European Journal 25, no. 9 (January 11, 2019): 2358–65. http://dx.doi.org/10.1002/chem.201805790.
Full textCousin, Jonathan M., and Mary J. Cloninger. "Glycodendrimers: tools to explore multivalent galectin-1 interactions." Beilstein Journal of Organic Chemistry 11 (May 12, 2015): 739–47. http://dx.doi.org/10.3762/bjoc.11.84.
Full textNörpel, Julia, Simone Cavadini, Andreas D. Schenk, Alexandra Graff-Meyer, Daniel Hess, Jan Seebacher, Jeffrey A. Chao, and Varun Bhaskar. "Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture." PLOS Biology 19, no. 7 (July 23, 2021): e3001344. http://dx.doi.org/10.1371/journal.pbio.3001344.
Full textMiura, Yoshiko, and Tomohiro Fukuda. "Morphology Control of Alzheimer Amyloid β Peptide (1-42) on the Multivalent Sulfonated Sugar Interface." MRS Proceedings 1498 (2013): 203–6. http://dx.doi.org/10.1557/opl.2013.337.
Full textHu, Jun, Xue-Meng Sun, Jing-Yun Su, Yu-Fen Zhao, and Yong-Xiang Chen. "Different phosphorylation and farnesylation patterns tune Rnd3–14-3-3 interaction in distinct mechanisms." Chemical Science 12, no. 12 (2021): 4432–42. http://dx.doi.org/10.1039/d0sc05838f.
Full textGensler, Manuel, Christian Eidamshaus, Maurice Taszarek, Hans-Ulrich Reissig, and Jürgen P. Rabe. "Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy." Beilstein Journal of Organic Chemistry 11 (May 15, 2015): 817–27. http://dx.doi.org/10.3762/bjoc.11.91.
Full textLin, Kenneth, and Andrea M. Kasko. "Multivalent 3D Display of Glycopolymer Chains for Enhanced Lectin Interaction." Bioconjugate Chemistry 26, no. 8 (June 25, 2015): 1504–12. http://dx.doi.org/10.1021/acs.bioconjchem.5b00140.
Full textOtremba, Tobias, and Bart Jan Ravoo. "Dynamic multivalent interaction of phenylboronic acid functionalized dendrimers with vesicles." Tetrahedron 73, no. 33 (August 2017): 4972–78. http://dx.doi.org/10.1016/j.tet.2017.04.043.
Full textZakharova, S. S., S. U. Egelhaaf, L. B. Bhuiyan, C. W. Outhwaite, D. Bratko, and J. R. C. van der Maarel. "Multivalent ion–DNA interaction: Neutron scattering estimates of polyamine distribution." Journal of Chemical Physics 111, no. 23 (December 15, 1999): 10706–16. http://dx.doi.org/10.1063/1.480425.
Full textOOYA, Tooru, Masaru EGUCHI, and Nobuhiko YUI. "Design of Biodegradable Polyrotaxanes for Multivalent Interaction with Biological Systems." KOBUNSHI RONBUNSHU 59, no. 12 (2002): 734–41. http://dx.doi.org/10.1295/koron.59.734.
Full textHall, Pamela R., Brian Hjelle, David C. Brown, Chunyan Ye, Virginie Bondu-Hawkins, Kathleen A. Kilpatrick, and Richard S. Larson. "Multivalent Presentation of Antihantavirus Peptides on Nanoparticles Enhances Infection Blockade." Antimicrobial Agents and Chemotherapy 52, no. 6 (April 7, 2008): 2079–88. http://dx.doi.org/10.1128/aac.01415-07.
Full textApgar, J. R. "Association of the crosslinked IgE receptor with the membrane skeleton is independent of the known signaling mechanisms in rat basophilic leukemia cells." Cell Regulation 2, no. 3 (March 1991): 181–91. http://dx.doi.org/10.1091/mbc.2.3.181.
Full textOrtiz-Muñoz, Andrés, Héctor F. Medina-Abarca, and Walter Fontana. "Combinatorial protein–protein interactions on a polymerizing scaffold." Proceedings of the National Academy of Sciences 117, no. 6 (January 24, 2020): 2930–37. http://dx.doi.org/10.1073/pnas.1912745117.
Full textKim, Eun-Hye, Boyang Ning, Masuki Kawamoto, Hideyuki Miyatake, Eiry Kobatake, Yoshihiro Ito, and Jun Akimoto. "Conjugation of biphenyl groups with poly(ethylene glycol) to enhance inhibitory effects on the PD-1/PD-L1 immune checkpoint interaction." Journal of Materials Chemistry B 8, no. 44 (2020): 10162–71. http://dx.doi.org/10.1039/d0tb01729a.
Full textMuñoz, Antonio, Laura Rodríguez-Pérez, Santiago Casado, Beatriz M. Illescas, and Nazario Martín. "Multivalent fullerene/π-extended TTF electroactive molecules – non-covalent interaction with graphene and charge transfer implications." Journal of Materials Chemistry C 7, no. 29 (2019): 8962–68. http://dx.doi.org/10.1039/c9tc02277e.
Full textBertuzzi, Sara, Ana Gimeno, Ane Martinez-Castillo, Marta G. Lete, Sandra Delgado, Cristina Airoldi, Marina Rodrigues Tavares, et al. "Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers." International Journal of Molecular Sciences 22, no. 11 (June 1, 2021): 6000. http://dx.doi.org/10.3390/ijms22116000.
Full textHuerta, Vivian, Patricia Toledo, Noralvis Fleitas, Alejandro Martín, Dianne Pupo, Alexis Yero, Mónica Sarría, et al. "Receptor-activated human α2-macroglobulin interacts with the envelope protein of dengue virus and protects virions from temperature-induced inactivation through multivalent binding." Journal of General Virology 95, no. 12 (December 1, 2014): 2668–76. http://dx.doi.org/10.1099/vir.0.068544-0.
Full textHidayat, Chusnul, Mikio Nakajima, Mutsumi Takagi, and Toshiomi Yoshida. "Multivalent binding interaction of alcohol dehydrogenase on dye-metal affinity matrix." Journal of Bioscience and Bioengineering 96, no. 2 (January 2003): 168–73. http://dx.doi.org/10.1016/s1389-1723(03)90120-4.
Full textFujihara, Shingo, and Ryo Akiyama. "Attractive interaction between macroanions mediated by multivalent cations in biological fluids." Journal of Molecular Liquids 200 (December 2014): 89–94. http://dx.doi.org/10.1016/j.molliq.2014.06.022.
Full textShahinuzzaman, MD, and Dipak Barua. "A Multiscale Algorithm for Spatiotemporal Modeling of Multivalent Protein–Protein Interaction." Journal of Computational Biology 24, no. 12 (December 2017): 1275–83. http://dx.doi.org/10.1089/cmb.2017.0178.
Full textShahinuzzaman, Md, Jawahar Khetan, and Dipak Barua. "A spatio-temporal model reveals self-limiting Fc ɛ RI cross-linking by multivalent antigens." Royal Society Open Science 5, no. 9 (September 2018): 180190. http://dx.doi.org/10.1098/rsos.180190.
Full textLinne, Christine, Daniele Visco, Stefano Angioletti-Uberti, Liedewij Laan, and Daniela J. Kraft. "Direct visualization of superselective colloid-surface binding mediated by multivalent interactions." Proceedings of the National Academy of Sciences 118, no. 36 (August 31, 2021): e2106036118. http://dx.doi.org/10.1073/pnas.2106036118.
Full textLi, Yuqi, Yaxiang Lu, Philipp Adelhelm, Maria-Magdalena Titirici, and Yong-Sheng Hu. "Intercalation chemistry of graphite: alkali metal ions and beyond." Chemical Society Reviews 48, no. 17 (2019): 4655–87. http://dx.doi.org/10.1039/c9cs00162j.
Full textBender, Dawn, Eulália Maria Lima Da Silva, Jingrong Chen, Annelise Poss, Lauren Gawey, Zane Rulon, and Susannah Rankin. "Multivalent interaction of ESCO2 with the replication machinery is required for sister chromatid cohesion in vertebrates." Proceedings of the National Academy of Sciences 117, no. 2 (December 26, 2019): 1081–89. http://dx.doi.org/10.1073/pnas.1911936117.
Full textMaslanka Figueroa, Sara, Daniel Fleischmann, Sebastian Beck, and Achim Goepferich. "The Effect of Ligand Mobility on the Cellular Interaction of Multivalent Nanoparticles." Macromolecular Bioscience 20, no. 4 (February 20, 2020): 1900427. http://dx.doi.org/10.1002/mabi.201900427.
Full textKondo, Michio, Hiroshi Kitajima, Teruo Yasunaga, Hiroaki Kodama, Tommaso Costa, and Yasuyuki Shimohigashi. "A Tetrameric Enkephalin Analog for the Putative Multivalent Interaction with Opioid Receptors." Bulletin of the Chemical Society of Japan 68, no. 11 (November 1995): 3161–67. http://dx.doi.org/10.1246/bcsj.68.3161.
Full textVico, Raquel V., Jens Voskuhl, and Bart Jan Ravoo. "Multivalent Interaction of Cyclodextrin Vesicles, Carbohydrate Guests, and Lectins: A Kinetic Investigation†." Langmuir 27, no. 4 (February 15, 2011): 1391–97. http://dx.doi.org/10.1021/la1038975.
Full textAmbrosi, Moira, Neil R. Cameron, Benjamin G. Davis, and Snjezana Stolnik. "Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands." Organic & Biomolecular Chemistry 3, no. 8 (2005): 1476. http://dx.doi.org/10.1039/b411555b.
Full textWang, Deyun, Jaclyn Iera, Heather Baker, Priscilla Hogan, Roger Ptak, Lu Yang, Tracy Hartman, et al. "Multivalent binding oligomers inhibit HIV Tat–TAR interaction critical for viral replication." Bioorganic & Medicinal Chemistry Letters 19, no. 24 (December 2009): 6893–97. http://dx.doi.org/10.1016/j.bmcl.2009.10.078.
Full textYoon, Seon-Joo, Ken-ichi Nakayama, Noriko Takahashi, Hirokazu Yagi, Natalia Utkina, Helen Ying Wang, Koichi Kato, Martin Sadilek, and Sen-itiroh Hakomori. "Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside." Glycoconjugate Journal 23, no. 9 (November 18, 2006): 639–49. http://dx.doi.org/10.1007/s10719-006-9001-4.
Full textYoon, Seon-Joo, Ken-ichi Nakayama, Noriko Takahashi, Hirokazu Yagi, Natalia Utkina, Helen Ying Wang, Koichi Kato, Martin Sadilek, and Sen-itiroh Hakomori. "Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside." Glycoconjugate Journal 24, no. 2-3 (January 19, 2007): 181. http://dx.doi.org/10.1007/s10719-006-9027-7.
Full textZhang, Bailing, Xiyao Cheng, Meng Gao, Yongqi Huang, and Zhengding Su. "Rational Design of Multivalent Anticancer Peptides Inhibiting PD-1/PD-L1 Interaction." Biophysical Journal 120, no. 3 (February 2021): 297a. http://dx.doi.org/10.1016/j.bpj.2020.11.1900.
Full textKoschek, Katharina, Vedat Durmaz, Oxana Krylova, Marek Wieczorek, Shilpi Gupta, Martin Richter, Alexander Bujotzek, et al. "Peptide–polymer ligands for a tandem WW-domain, an adaptive multivalent protein–protein interaction: lessons on the thermodynamic fitness of flexible ligands." Beilstein Journal of Organic Chemistry 11 (May 18, 2015): 837–47. http://dx.doi.org/10.3762/bjoc.11.93.
Full textForce Aldred, Shelley, Andrew Boudreau, Ben Buelow, Starlynn Clarke, Kevin Dang, Laura Davison, Katherine Harris, et al. "Multispecific antibodies targeting CD38 show potent tumor-specific cytotoxicity." Journal of Clinical Oncology 36, no. 5_suppl (February 10, 2018): 57. http://dx.doi.org/10.1200/jco.2018.36.5_suppl.57.
Full textJeffery, Heather M., and Robert O. J. Weinzierl. "Multivalent and Bidirectional Binding of Transcriptional Transactivation Domains to the MED25 Coactivator." Biomolecules 10, no. 9 (August 19, 2020): 1205. http://dx.doi.org/10.3390/biom10091205.
Full textNakase, I., N. Ueno, M. Katayama, K. Noguchi, T. Takatani-Nakase, N. B. Kobayashi, T. Yoshida, I. Fujii, and S. Futaki. "Receptor clustering and activation by multivalent interaction through recognition peptides presented on exosomes." Chemical Communications 53, no. 2 (2017): 317–20. http://dx.doi.org/10.1039/c6cc06719k.
Full textLim, C. W., O. Crespo-Biel, M. C. A. Stuart, D. N. Reinhoudt, J. Huskens, and B. J. Ravoo. "Intravesicular and intervesicular interaction by orthogonal multivalent host guest and metal ligand complexation." Proceedings of the National Academy of Sciences 104, no. 17 (April 16, 2007): 6986–91. http://dx.doi.org/10.1073/pnas.0611123104.
Full textde Wildt, R. M. T., I. M. Tomlinson, J. L. Ong, and P. Holliger. "Isolation of receptor-ligand pairs by capture of long-lived multivalent interaction complexes." Proceedings of the National Academy of Sciences 99, no. 13 (June 25, 2002): 8530–35. http://dx.doi.org/10.1073/pnas.132008499.
Full textPorret, Estelle, Jean-Baptiste Fleury, Lucie Sancey, Mylène Pezet, Jean-Luc Coll, and Xavier Le Guével. "Augmented interaction of multivalent arginine coated gold nanoclusters with lipid membranes and cells." RSC Advances 10, no. 11 (2020): 6436–43. http://dx.doi.org/10.1039/c9ra10047d.
Full textHan, Suyeong, Yu‐na Kim, Gyunghee Jo, Young Eun Kim, Ho Min Kim, Jeong‐Mo Choi, and Yongwon Jung. "Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms." Angewandte Chemie 132, no. 51 (October 15, 2020): 23444–51. http://dx.doi.org/10.1002/ange.202010054.
Full textHan, Suyeong, Yu‐na Kim, Gyunghee Jo, Young Eun Kim, Ho Min Kim, Jeong‐Mo Choi, and Yongwon Jung. "Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms." Angewandte Chemie International Edition 59, no. 51 (October 15, 2020): 23244–51. http://dx.doi.org/10.1002/anie.202010054.
Full textHashidzume, Akihito, Takahiro Itami, Yuri Kamon, and Akira Harada. "A Simplified Model for Multivalent Interaction Competing with a Low Molecular Weight Competitor." Chemistry Letters 49, no. 11 (November 5, 2020): 1306–8. http://dx.doi.org/10.1246/cl.200501.
Full textCurk, Tine, Jure Dobnikar, and Daan Frenkel. "Optimal multivalent targeting of membranes with many distinct receptors." Proceedings of the National Academy of Sciences 114, no. 28 (June 26, 2017): 7210–15. http://dx.doi.org/10.1073/pnas.1704226114.
Full text