Dissertations / Theses on the topic 'Multivariate data analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Multivariate data analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Oliveira, Irene. "Correlated data in multivariate analysis." Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401414.
Full textPrelorendjos, Alexios. "Multivariate analysis of metabonomic data." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24286.
Full textYang, Di. "Analysis guided visual exploration of multivariate data." Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-050407-005925/.
Full textLans, Ivo A. van der. "Nonlinear multivariate analysis for multiattribute preference data." [Leiden] : DSWO Press, Leiden University, 1992. http://catalog.hathitrust.org/api/volumes/oclc/28733326.html.
Full textZhu, Liang. "Semiparametric analysis of multivariate longitudinal data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/6044.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 3, 2009) Vita. Includes bibliographical references.
Tavares, Nuno Filipe Ramalho da Cunha. "Multivariate analysis applied to clinical analysis data." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12288.
Full textFolate, vitamin B12, iron and hemoglobin are essential for metabolic functions in the body. The deficiency of these can be the cause of several known pathologies and, untreated, can be responsible for severe morbidity and even death. The objective of this study is to characterize a population, residing in the metropolitan area of Lisbon and Setubal, concerning serum levels of folate, vitamin B12, iron and hemoglobin, as well as finding evidence of correlations between these parameters and illnesses, mainly cardiovascular, gastrointestinal, neurological and anemia. Clinical analysis data was collected and submitted to multivariate analysis. First the data was screened with Spearman correlation and Kruskal-Wallis analysis of variance to study correlations and variability between groups. To characterize the population, we used cluster analysis with Ward’s linkage method. Finally a sensitivity analysis was performed to strengthen the results. A positive correlation between iron with, ferritin and transferrin, and with hemoglobin was observed with the Spearman correlation. Kruskal-Wallis analysis of variance test showed significant differences between these biomarkers in persons aged 0 to 29, 30 to 59 and over 60 years old. Cluster analysis proved to be a useful tool when characterizing a population based on its biomarkers, showing evidence of low folate levels for the population in general, and hemoglobin levels below the reference values. Iron and vitamin B12 were within the reference range for most of the population. Low levels of the parameters were registered mainly in patients with cardiovascular, gastrointestinal, and neurological diseases and anemia.
Rehman, Naveed Ur. "Data-driven time-frequency analysis of multivariate data." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9116.
Full textDroop, Alastair Philip. "Correlation Analysis of Multivariate Biological Data." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507622.
Full textCollins, Gary Stephen. "Multivariate analysis of flow cytometry data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324749.
Full textHaydock, Richard. "Multivariate analysis of Raman spectroscopy data." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30697/.
Full textLee, Yau-wing. "Modelling multivariate survival data using semiparametric models." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B4257528X.
Full textTardif, Geneviève. "Multivariate Analysis of Canadian Water Quality Data." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32245.
Full textSnavely, Anna Catherine. "Multivariate Data Analysis with Applications to Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10371.
Full textBolton, Richard John. "Multivariate analysis of multiproduct market research data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302542.
Full textDurif, Ghislain. "Multivariate analysis of high-throughput sequencing data." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1334/document.
Full textThe statistical analysis of Next-Generation Sequencing data raises many computational challenges regarding modeling and inference, especially because of the high dimensionality of genomic data. The research work in this manuscript concerns hybrid dimension reduction methods that rely on both compression (representation of the data into a lower dimensional space) and variable selection. Developments are made concerning: the sparse Partial Least Squares (PLS) regression framework for supervised classification, and the sparse matrix factorization framework for unsupervised exploration. In both situations, our main purpose will be to focus on the reconstruction and visualization of the data. First, we will present a new sparse PLS approach, based on an adaptive sparsity-inducing penalty, that is suitable for logistic regression to predict the label of a discrete outcome. For instance, such a method will be used for prediction (fate of patients or specific type of unidentified single cells) based on gene expression profiles. The main issue in such framework is to account for the response to discard irrelevant variables. We will highlight the direct link between the derivation of the algorithms and the reliability of the results. Then, motivated by questions regarding single-cell data analysis, we propose a flexible model-based approach for the factorization of count matrices, that accounts for over-dispersion as well as zero-inflation (both characteristic of single-cell data), for which we derive an estimation procedure based on variational inference. In this scheme, we consider probabilistic variable selection based on a spike-and-slab model suitable for count data. The interest of our procedure for data reconstruction, visualization and clustering will be illustrated by simulation experiments and by preliminary results on single-cell data analysis. All proposed methods were implemented into two R-packages "plsgenomics" and "CMF" based on high performance computing
李友榮 and Yau-wing Lee. "Modelling multivariate survival data using semiparametric models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B4257528X.
Full textZhou, Feifei, and 周飞飞. "Cure models for univariate and multivariate survival data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45700977.
Full textBergfors, Linus. "Explorative Multivariate Data Analysis of the Klinthagen Limestone Quarry Data." Thesis, Uppsala University, Department of Information Technology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122575.
Full text
The today quarry planning at Klinthagen is rough, which provides an opportunity to introduce new exciting methods to improve the quarry gain and efficiency. Nordkalk AB, active at Klinthagen, wishes to start a new quarry at a nearby location. To exploit future quarries in an efficient manner and ensure production quality, multivariate statistics may help gather important information.
In this thesis the possibilities of the multivariate statistical approaches of Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were evaluated on the Klinthagen bore data. PCA data were spatially interpolated by Kriging, which also was evaluated and compared to IDW interpolation.
Principal component analysis supplied an overview of the variables relations, but also visualised the problems involved when linking geophysical data to geochemical data and the inaccuracy introduced by lacking data quality.
The PLS regression further emphasised the geochemical-geophysical problems, but also showed good precision when applied to strictly geochemical data.
Spatial interpolation by Kriging did not result in significantly better approximations than the less complex control interpolation by IDW.
In order to improve the information content of the data when modelled by PCA, a more discrete sampling method would be advisable. The data quality may cause trouble, though with sample technique of today it was considered to be of less consequence.
Faced with a single geophysical component to be predicted from chemical variables further geophysical data need to complement existing data to achieve satisfying PLS models.
The stratified rock composure caused trouble when spatially interpolated. Further investigations should be performed to develop more suitable interpolation techniques.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Full textHopkins, Julie Anne. "Sampling designs for exploratory multivariate analysis." Thesis, University of Sheffield, 2000. http://etheses.whiterose.ac.uk/14798/.
Full textLawal, Najib. "Modelling and multivariate data analysis of agricultural systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/modelling-and-multivariate-data-analysis-of-agricultural-systems(f6b86e69-5cff-4ffb-a696-418662ecd694).html.
Full textCai, Jianwen. "Generalized estimating equations for censored multivariate failure time data /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/9581.
Full textBillah, Baki. "The analysis of multivariate incomplete failure time data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25823.pdf.
Full textRawizza, Mark Alan. "Time-series analysis of multivariate manufacturing data sets." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10895.
Full textRitchie, Elspeth Kathryn. "Application of multivariate data analysis in biopharmaceutical production." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3356.
Full textWang, Lianming. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4375.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
Nicolini, Olivier. "LIBS Multivariate Analysis with Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286595.
Full textLaser-Induced Breakdown Spectroscopy (LIBS) är en spektroskopisk teknik som används för kemisk analys av material. Genom att analysera det spektrum som erhållits med denna teknik är det möjligt att förstå den kemiska sammansättningen av ett prov. Möjligheten att analysera material på ett kontaktlöst och online sätt utan förberedelse av prov gör LIBS till en av de mest intressanta teknikerna för kemisk sammansättning analys. Trots dess inneboende fördelar lider LIBS-analysen av dålig noggrannhet och begränsad reproducerbarhet av resultaten på grund av interferenseffekter orsakade av provets kemiska sammansättning eller andra experimentella faktorer. Hur man kan förbättra analysens noggrannhet genom att extrahera användbar information från LIBS-data med hög dimensionering är fortfarande den största utmaningen med denna teknik. I det nuvarande arbetet, med syftet att föreslå en robust analysmetod, presenterar jag en pipeline för multivariat regression på LIBS-data som består av förbehandling, val av funktioner och regression. Första rådata förbehandlas genom tillämpning av intensitetsfiltrering, normalisering och baslinjekorrektion för att mildra effekten av interferensfaktorer såsom laserens energifluktuationer eller närvaron av baslinjen i spektrumet. Funktionsval gör det möjligt att hitta de mest informativa linjerna för ett element som sedan används som input i den efterföljande regressionsfasen för att förutsäga elementkoncentrationen. Partial Least Squares (PLS) och Elastic Net visade den bästa förutsägelseförmågan bland de undersökta regressionsmetoderna, medan Interval PLS (iPLS) och Iterative PredictorWeighting PLS (IPW-PLS) visade sig vara de bästa funktionsval algoritmerna för denna typ av data. Genom att tillämpa dessa funktionsval algoritmer på hela LIBS-spektrumet före regression med PLS eller Elastic Net är det möjligt att få exakta förutsägelser på ett robust sätt.
Chen, Man-Hua. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4776.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 6, 2009) Includes bibliographical references.
Sheppard, Therese. "Extending covariance structure analysis for multivariate and functional data." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/extending-covariance-structure-analysis-for-multivariate-and-functional-data(e2ad7f12-3783-48cf-b83c-0ca26ef77633).html.
Full textWan, Chung-him, and 溫仲謙. "Analysis of zero-inflated count data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703719.
Full textWan, Chung-him. "Analysis of zero-inflated count data." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703719.
Full text陳志昌 and Chee-cheong Chan. "Compositional data analysis of voting patterns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31977236.
Full textChan, Chee-cheong. "Compositional data analysis of voting patterns." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13787160.
Full textNothnagel, Carien. "Multivariate data analysis using spectroscopic data of fluorocarbon alcohol mixtures / Nothnagel, C." Thesis, North-West University, 2012. http://hdl.handle.net/10394/7064.
Full textThesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
Ahmadi-Nedushan, Behrooz 1966. "Multivariate statistical analysis of monitoring data for concrete dams." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82815.
Full textStatistical models such as multiple linear regression, and back propagation neural networks have been used to estimate the response of individual instruments. Multiple linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) models and (2) models that consider concrete temperatures as predictors.
Univerariate, bivariate, and multivariate methods are proposed for the identification of anomalies in the instrumentation data. The source of these anomalies can be either bad readings, faulty instruments, or changes in dam behavior.
The proposed methodologies are applied to three different dams, Idukki, Daniel Johnson and Chute-a-Caron, which are respectively an arch, multiple arch and a gravity dam. Displacements, strains, flow rates, and crack openings of these three dams are analyzed.
This research also proposes various multivariate statistical analyses and artificial neural networks techniques to analyze dam monitoring data. One of these methods, Principal Component Analysis (PCA) is concerned with explaining the variance-covariance structure of a data set through a few linear combinations of the original variables. The general objectives are (1) data reduction and (2) data interpretation. Other multivariate analysis methods such as canonical correlation analysis, partial least squares and nonlinear principal component analysis are discussed. The advantages of methodologies for noise reduction, the reduction of number of variables that have to be monitored, the prediction of response parameters, and the identification of faulty readings are discussed. Results indicated that dam responses are generally correlated and that only a few principal components can summarize the behavior of a dam.
Das, Mitali. "Motion within music : the analysis of multivariate MIDI data." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367466.
Full textEdberg, Alexandra. "Monitoring Kraft Recovery Boiler Fouling by Multivariate Data Analysis." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230906.
Full textDetta arbete handlar om inkruster i sodapannan pa Montes del Plata, Uruguay. Multivariat dataanalys har anvands for att analysera den stora datamangd som fanns tillganglig for att undersoka hur olika parametrar paverkar inkrusterproblemen. Principal·· Component Analysis (PCA) och Partial Least Square Projection (PLS) har i detta jobb anvants. PCA har anvants for att jamfora medelvarden mellan tidsperioder med hoga och laga inkrusterproblem medan PLS har anvants for att studera korrelationen mellan variablema och darmed ge en indikation pa vilka parametrar som kan tankas att andras for att forbattra tillgangligheten pa sodapannan. Resultaten visar att sodapannan tenderar att ha problem med inkruster som kan hero pa fdrdelningen av luft, pa svartlutens tryck eller pa torrhalten i svartluten. Resultaten visar ocksa att multivariat dataanalys ar ett anvandbart verktyg for att analysera dessa typer av inkrusterproblem.
Chang, Janis. "Analysis of ordered categorical data." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27857.
Full textScience, Faculty of
Statistics, Department of
Graduate
Eslava-Gomez, Guillermina. "Projection pursuit and other graphical methods for multivariate data." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236118.
Full textSiluyele, Ian John. "Power studies of multivariate two-sample tests of comparison." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6355_1255091702.
Full textThe multivariate two-sample tests provide a means to test the match between two multivariate distributions. Although many tests exist in the literature, relatively little is known about the relative power of these procedures. The studies reported in the thesis contrasts the effectiveness, in terms of power, of seven such tests with a Monte Carlo study. The relative power of the tests was investigated against location, scale, and correlation alternatives.
Minnen, David. "Unsupervised discovery of activity primitives from multivariate sensor data." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24623.
Full textCommittee Chair: Thad Starner; Committee Member: Aaron Bobick; Committee Member: Bernt Schiele; Committee Member: Charles Isbell; Committee Member: Irfan Essa
Fitzgerald-DeHoog, Lindsay M. "Multivariate analysis of proteomic data| Functional group analysis using a global test." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1602759.
Full textProteomics is a relatively new discipline being implemented in life science fields. Proteomics allows a whole-systems approach to discerning changes in organismal physiology due to physical perturbations. The advantages of a proteomic approach may be counteracted by the ability to analyze the data in a meaningful way due to inherent problems with statistical assumptions. Furthermore, analyzing significant protein volume differences among treatment groups often requires analysis of numerous proteins even when limiting analyses to a particular protein type or physiological pathway. Improper use of traditional techniques leads to problems with multiple hypotheses testing.
This research will examine two common techniques used to analyze proteomic data and will apply these to a novel proteomic data set. In addition, a Global Test originally developed for gene array data will be employed to discover its utility for proteomic data and the ability to counteract the multiple hypotheses testing problems encountered with traditional analyses.
Kurtovic, Sanela. "Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis." Doctoral thesis, Uppsala University, Department of Biochemistry and Organic Chemistry, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8718.
Full textEvolution of enzymes with novel functional properties has gained much attention in recent years. Naturally evolved enzymes are adapted to work in living cells under physiological conditions, circumstances that are not always available for industrial processes calling for novel and better catalysts. Furthermore, altering enzyme function also affords insight into how enzymes work and how natural evolution operates.
Previous investigations have explored catalytic properties in the directed evolution of mutant libraries with high sequence variation. Before this study was initiated, functional analysis of mutant libraries was, to a large extent, restricted to uni- or bivariate methods. Consequently, there was a need to apply multivariate data analysis (MVA) techniques in this context. Directed evolution was approached by DNA shuffling of glutathione transferases (GSTs) in this thesis. GSTs are multifarious enzymes that have detoxication of both exo- and endogenous compounds as their primary function. They catalyze the nucleophilic attack by the tripeptide glutathione on many different electrophilic substrates.
Several multivariate analysis tools, e.g. principal component (PC), hierarchical cluster, and K-means cluster analyses, were applied to large mutant libraries assayed with a battery of GST substrates. By this approach, evolvable units (quasi-species) fit for further evolution were identified. It was clear that different substrates undergoing different kinds of chemical transformation can group together in a multi-dimensional substrate-activity space, thus being responsible for a certain quasi-species cluster. Furthermore, the importance of the chemical environment, or substrate matrix, in enzyme evolution was recognized. Diverging substrate selectivity profiles among homologous enzymes acting on substrates performing the same kind of chemistry were identified by MVA. Important structure-function activity relationships with the prodrug azathioprine were elucidated by segment analysis of a shuffled GST mutant library. Together, these results illustrate important methods applied to molecular enzyme evolution.
Stenlund, Hans. "Improving interpretation by orthogonal variation : Multivariate analysis of spectroscopic data." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43476.
Full textCombrexelle, Sébastien. "Multifractal analysis for multivariate data with application to remote sensing." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/16477/1/Combrexelle.pdf.
Full textDuchesne, Carl. "Improvement of processes and product quality through multivariate data analysis /." *McMaster only, 2000.
Find full textFernandes, Gomes da Silva Alexandre Miguel. "Methods for the analysis of multivariate lifetime data with frailty." Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408331.
Full textRobson, Geoffrey. "Multiple outlier detection and cluster analysis of multivariate normal data." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53508.
Full textENGLISH ABSTRACT: Outliers may be defined as observations that are sufficiently aberrant to arouse the suspicion of the analyst as to their origin. They could be the result of human error, in which case they should be corrected, but they may also be an interesting exception, and this would deserve further investigation. Identification of outliers typically consists of an informal inspection of a plot of the data, but this is unreliable for dimensions greater than two. A formal procedure for detecting outliers allows for consistency when classifying observations. It also enables one to automate the detection of outliers by using computers. The special case of univariate data is treated separately to introduce essential concepts, and also because it may well be of interest in its own right. We then consider techniques used for detecting multiple outliers in a multivariate normal sample, and go on to explain how these may be generalized to include cluster analysis. Multivariate outlier detection is based on the Minimum Covariance Determinant (MCD) subset, and is therefore treated in detail. Exact bivariate algorithms were refined and implemented, and the solutions were used to establish the performance of the commonly used heuristic, Fast–MCD.
AFRIKAANSE OPSOMMING: Uitskieters word gedefinieer as waarnemings wat tot s´o ’n mate afwyk van die verwagte gedrag dat die analis wantrouig is oor die oorsprong daarvan. Hierdie waarnemings mag die resultaat wees van menslike foute, in welke geval dit reggestel moet word. Dit mag egter ook ’n interressante verskynsel wees wat verdere ondersoek benodig. Die identifikasie van uitskieters word tipies informeel deur inspeksie vanaf ’n grafiese voorstelling van die data uitgevoer, maar hierdie benadering is onbetroubaar vir dimensies groter as twee. ’n Formele prosedure vir die bepaling van uitskieters sal meer konsekwente klassifisering van steekproefdata tot gevolg hˆe. Dit gee ook geleentheid vir effektiewe rekenaar implementering van die tegnieke. Aanvanklik word die spesiale geval van eenveranderlike data behandel om noodsaaklike begrippe bekend te stel, maar ook aangesien dit in eie reg ’n area van groot belang is. Verder word tegnieke vir die identifikasie van verskeie uitskieters in meerveranderlike, normaal verspreide data beskou. Daar word ook ondersoek hoe hierdie idees veralgemeen kan word om tros analise in te sluit. Die sogenaamde Minimum Covariance Determinant (MCD) subversameling is fundamenteel vir die identifikasie van meerveranderlike uitskieters, en word daarom in detail ondersoek. Deterministiese tweeveranderlike algoritmes is verfyn en ge¨ımplementeer, en gebruik om die effektiwiteit van die algemeen gebruikte heuristiese algoritme, Fast–MCD, te ondersoek.
Morris, Nathan J. "Multivariate and Structural Equation Models for Family Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1247004562.
Full textHu, Zongliang. "New developments in multiple testing and multivariate testing for high-dimensional data." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/534.
Full text