Journal articles on the topic 'Multivariate Markov chains'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multivariate Markov chains.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Flournoy, Nancy. "Dependency in multivariate markov chains." Linear Algebra and its Applications 127 (1990): 85–106. http://dx.doi.org/10.1016/0024-3795(90)90337-c.
Full textJanssen, A., and J. Segers. "Markov Tail Chains." Journal of Applied Probability 51, no. 4 (2014): 1133–53. http://dx.doi.org/10.1239/jap/1421763332.
Full textJanssen, A., and J. Segers. "Markov Tail Chains." Journal of Applied Probability 51, no. 04 (2014): 1133–53. http://dx.doi.org/10.1017/s0001867800012027.
Full textJanssen, A., and J. Segers. "Markov Tail Chains." Journal of Applied Probability 51, no. 04 (2014): 1133–53. http://dx.doi.org/10.1017/s002190020001202x.
Full textColombi, R., and S. Giordano. "Graphical models for multivariate Markov chains." Journal of Multivariate Analysis 107 (May 2012): 90–103. http://dx.doi.org/10.1016/j.jmva.2012.01.010.
Full textLee, Shiowjen, and J. Lynch. "Total Positivity of Markov Chains and the Failure Rate Character of Some First Passage Times." Advances in Applied Probability 29, no. 3 (1997): 713–32. http://dx.doi.org/10.2307/1428083.
Full textLee, Shiowjen, and J. Lynch. "Total Positivity of Markov Chains and the Failure Rate Character of Some First Passage Times." Advances in Applied Probability 29, no. 03 (1997): 713–32. http://dx.doi.org/10.1017/s0001867800028317.
Full textNicolau, João. "A New Model for Multivariate Markov Chains." Scandinavian Journal of Statistics 41, no. 4 (2014): 1124–35. http://dx.doi.org/10.1111/sjos.12087.
Full textNicolau, João, and Flavio Ivo Riedlinger. "Estimation and inference in multivariate Markov chains." Statistical Papers 56, no. 4 (2014): 1163–73. http://dx.doi.org/10.1007/s00362-014-0630-6.
Full textPerfekt, Roland. "Extreme Value Theory for a Class of Markov Chains with Values in ℝd". Advances in Applied Probability 29, № 1 (1997): 138–64. http://dx.doi.org/10.2307/1427864.
Full textPerfekt, Roland. "Extreme Value Theory for a Class of Markov Chains with Values in ℝd". Advances in Applied Probability 29, № 01 (1997): 138–64. http://dx.doi.org/10.1017/s0001867800027828.
Full textBeare, Brendan K., and Juwon Seo. "Vine Copula Specifications for Stationary Multivariate Markov Chains." Journal of Time Series Analysis 36, no. 2 (2014): 228–46. http://dx.doi.org/10.1111/jtsa.12103.
Full textVasconcelos, Carolina, and Bruno Damásio. "GenMarkov: Modeling Generalized Multivariate Markov Chains in R." R Journal 16, no. 1 (2025): 96–113. https://doi.org/10.32614/rj-2024-006.
Full textChing, Wai-Ki, Michael K. Ng, and Eric S. Fung. "Higher-order multivariate Markov chains and their applications." Linear Algebra and its Applications 428, no. 2-3 (2008): 492–507. http://dx.doi.org/10.1016/j.laa.2007.05.021.
Full textKosorok, Michael R. "Monte Carlo error estimation for multivariate Markov chains." Statistics & Probability Letters 46, no. 1 (2000): 85–93. http://dx.doi.org/10.1016/s0167-7152(99)00090-5.
Full textZhou, Hua, and Kenneth Lange. "Composition Markov chains of multinomial type." Advances in Applied Probability 41, no. 1 (2009): 270–91. http://dx.doi.org/10.1239/aap/1240319585.
Full textZhou, Hua, and Kenneth Lange. "Composition Markov chains of multinomial type." Advances in Applied Probability 41, no. 01 (2009): 270–91. http://dx.doi.org/10.1017/s0001867800003220.
Full textCerqueti, Roy, Paolo Falbo, Gianfranco Guastaroba, and Cristian Pelizzari. "Approximating multivariate Markov chains for bootstrapping through contiguous partitions." OR Spectrum 37, no. 3 (2015): 803–41. http://dx.doi.org/10.1007/s00291-015-0397-8.
Full textColombi, Roberto, and Sabrina Giordano. "Monotone dependence in graphical models for multivariate Markov chains." Metrika 76, no. 7 (2012): 873–85. http://dx.doi.org/10.1007/s00184-012-0421-9.
Full textZamparo, Marco, and Massimiliano Semeraro. "Large deviations for quadratic functionals of stable Gauss–Markov chains and entropy production." Journal of Mathematical Physics 64, no. 2 (2023): 023302. http://dx.doi.org/10.1063/5.0096315.
Full textKhare, Kshitij, and Nabanita Mukherjee. "Convergence analysis of some multivariate Markov chains using stochastic monotonicity." Annals of Applied Probability 23, no. 2 (2013): 811–33. http://dx.doi.org/10.1214/12-aap856.
Full textResnick, Sidney I., and David Zeber. "Asymptotics of Markov Kernels and the Tail Chain." Advances in Applied Probability 45, no. 1 (2013): 186–213. http://dx.doi.org/10.1239/aap/1363354108.
Full textResnick, Sidney I., and David Zeber. "Asymptotics of Markov Kernels and the Tail Chain." Advances in Applied Probability 45, no. 01 (2013): 186–213. http://dx.doi.org/10.1017/s0001867800006248.
Full textBing-Hwang Juang, S. Levinson, and M. Sondhi. "Maximum likelihood estimation for multivariate mixture observations of markov chains (Corresp.)." IEEE Transactions on Information Theory 32, no. 2 (1986): 307–9. http://dx.doi.org/10.1109/tit.1986.1057145.
Full textBrunel, N. J. B., J. Lapuyade-Lahorgue, and W. Pieczynski. "Modeling and Unsupervised Classification of Multivariate Hidden Markov Chains With Copulas." IEEE Transactions on Automatic Control 55, no. 2 (2010): 338–49. http://dx.doi.org/10.1109/tac.2009.2034929.
Full textKhare, Kshitij, and Hua Zhou. "Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions." Annals of Applied Probability 19, no. 2 (2009): 737–77. http://dx.doi.org/10.1214/08-aap562.
Full textJuang, B. H. "Maximum-Likelihood Estimation for Mixture Multivariate Stochastic Observations of Markov Chains." AT&T Technical Journal 64, no. 6 (1985): 1235–49. http://dx.doi.org/10.1002/j.1538-7305.1985.tb00273.x.
Full textGauvain, J. L., and Chin-Hui Lee. "Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains." IEEE Transactions on Speech and Audio Processing 2, no. 2 (1994): 291–98. http://dx.doi.org/10.1109/89.279278.
Full textLi, Xutao. "On Multivariate Markov Chains for Common and Non-Common Objects in Multiple Networks." Numerical Mathematics: Theory, Methods and Applications 5, no. 3 (2012): 384–402. http://dx.doi.org/10.4208/nmtma.2012.m1108.
Full textNascimento, Diego, Cleber Xavier, Israel Felipe, and Francisco Louzada Neto. "Dynamic Conditional Correlation GARCH: A Multivariate Time Series Novel using a Bayesian Approach." Journal of Modern Applied Statistical Methods 18, no. 1 (2020): 2–17. http://dx.doi.org/10.22237/jmasm/1556669220.
Full textLi, Wen, Rihuan Ke, Wai-Ki Ching, and Michael K. Ng. "A C-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains." Computers & Mathematics with Applications 78, no. 3 (2019): 1008–25. http://dx.doi.org/10.1016/j.camwa.2019.03.016.
Full textDamásio, Bruno, and Sandro Mendonça. "Modelling insurgent-incumbent dynamics: Vector autoregressions, multivariate Markov chains, and the nature of technological competition." Applied Economics Letters 26, no. 10 (2018): 843–49. http://dx.doi.org/10.1080/13504851.2018.1502863.
Full textQin, Qian, and James P. Hobert. "Trace-class Monte Carlo Markov chains for Bayesian multivariate linear regression with non-Gaussian errors." Journal of Multivariate Analysis 166 (July 2018): 335–45. http://dx.doi.org/10.1016/j.jmva.2018.03.012.
Full textGriffiths, Robert. "Lancaster distributions and Markov chains with multivariate Poisson–Charlier, Meixner and Hermite–Chebycheff polynomial eigenfunctions." Journal of Approximation Theory 207 (July 2016): 139–64. http://dx.doi.org/10.1016/j.jat.2016.02.013.
Full textDamásio, Bruno, and João Nicolau. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates." Chaos, Solitons & Fractals 180 (March 2024): 114478. http://dx.doi.org/10.1016/j.chaos.2024.114478.
Full textColangelo, A., A. Müller, and M. Scarsini. "Positive Dependence and Weak Convergence." Journal of Applied Probability 43, no. 1 (2006): 48–59. http://dx.doi.org/10.1239/jap/1143936242.
Full textColangelo, A., A. Müller, and M. Scarsini. "Positive Dependence and Weak Convergence." Journal of Applied Probability 43, no. 01 (2006): 48–59. http://dx.doi.org/10.1017/s0021900200001352.
Full textKing, Martin D., Martin J. Crowder, David J. Hand, et al. "Temporal Relation between the ADC and DC Potential Responses to Transient Focal Ischemia in the Rat: A Markov Chain Monte Carlo Simulation Analysis." Journal of Cerebral Blood Flow & Metabolism 23, no. 6 (2003): 677–88. http://dx.doi.org/10.1097/01.wcb.0000066919.40164.c0.
Full textDimitriou, Vasileios A., Andreas C. Georgiou, and Nikolas Tsantas. "On the equilibrium personnel structure in the presence of vertical and horizontal mobility via multivariate Markov chains." Journal of the Operational Research Society 66, no. 6 (2015): 993–1006. http://dx.doi.org/10.1057/jors.2014.66.
Full textCiampi, Antonio, Alina Dyachenko, Martin Cole, and Jane McCusker. "Delirium superimposed on dementia: defining disease states and course from longitudinal measurements of a multivariate index using latent class analysis and hidden Markov chains." International Psychogeriatrics 23, no. 10 (2011): 1659–70. http://dx.doi.org/10.1017/s1041610211000871.
Full textSegers, Johan. "Functionals of clusters of extremes." Advances in Applied Probability 35, no. 4 (2003): 1028–45. http://dx.doi.org/10.1239/aap/1067436333.
Full textSegers, Johan. "Functionals of clusters of extremes." Advances in Applied Probability 35, no. 04 (2003): 1028–45. http://dx.doi.org/10.1017/s0001867800012726.
Full textMikosch, Thomas, and Olivier Wintenberger. "The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains." Probability Theory and Related Fields 159, no. 1-2 (2013): 157–96. http://dx.doi.org/10.1007/s00440-013-0504-1.
Full textXiong, Zikang, Yao Xiao, Jianhui Ning, and Hong Qin. "Representative Points Based on Power Exponential Kernel Discrepancy." Axioms 11, no. 12 (2022): 711. http://dx.doi.org/10.3390/axioms11120711.
Full textSedlmeier, Katrin, Sebastian Mieruch, Gerd Schädler, and Christoph Kottmeier. "Compound extremes in a changing climate – a Markov chain approach." Nonlinear Processes in Geophysics 23, no. 6 (2016): 375–90. http://dx.doi.org/10.5194/npg-23-375-2016.
Full textWang, Lei, Yu Sun, and Jining Wang. "Price Volatility Spillovers in Energy Supply Chains: Empirical Evidence from China." Energies 18, no. 12 (2025): 3204. https://doi.org/10.3390/en18123204.
Full textGuseva, Maria, and Andrey Silaev. "Applying Bayesian methods for macroeconomic modeling of business cycle phases." St Petersburg University Journal of Economic Studies 37, no. 2 (2021): 298–317. http://dx.doi.org/10.21638/spbu05.2021.205.
Full textGrundler, Michael, and Daniel L. Rabosky. "Complex Ecological Phenotypes on Phylogenetic Trees: A Markov Process Model for Comparative Analysis of Multivariate Count Data." Systematic Biology 69, no. 6 (2020): 1200–1211. http://dx.doi.org/10.1093/sysbio/syaa031.
Full textMages, Tobias, Elli Anastasiadi, and Christian Rohner. "Non-Negative Decomposition of Multivariate Information: From Minimum to Blackwell-Specific Information." Entropy 26, no. 5 (2024): 424. http://dx.doi.org/10.3390/e26050424.
Full textNeumann, Jacob, Yen Ting Lin, Abhishek Mallela, et al. "Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit." Bioinformatics 38, no. 6 (2022): 1770–72. http://dx.doi.org/10.1093/bioinformatics/btac004.
Full text